Title of paper (max 15 words): Assessment modelling of alternative use of meliorated arable land Abstract (200–250 words):

INTRODUCTION

Keywords (5–8):

	INTRODUCTION
Text	
	STUDY MATERIALS AND METHODS
	STUDY MATERIALS (not obligatory)
Text	
	STUDY METHODS (not obligatory)
Text	
	RESULTS AND DISCUSSION
	CATEGORISATION OF ARABLE LAND
Text	
	SPATIAL PREFERENCES OF ARABLE LAND
Text	
	CONCLUSIONS
Text	
	ABBREVIATIONS
Samples	
$a = \text{acceleration} (\text{m} \cdot \text{s}^{-2})$)
$d = \text{diameter} (\text{cm}^2 \text{ or } \text{n})$	n^2 or km^2)

EC – electrical conductivity (S·m⁻¹ or mS·cm⁻¹)

Fr = Froude number (-)

NDVI = normalised difference vegetation index (–)

```
P = precipitations (mm)
```

 $Q = \text{discharge} (\text{cm}^3 \cdot \text{s}^{-1} \text{ or } \text{m}^3 \cdot \text{d}^{-1} \text{ or other unit of volume per time})$

T = temperature (K or °C)

v = velocity (m·s⁻¹ or km·h⁻¹)

V = volume (mm³ or cm³ or m³ or km³)

$\mu = \text{viscosity} (Pa \cdot s)$
$\rho = \text{density} (\text{g} \cdot \text{cm}^{-3} \text{ or } \text{kg} \cdot \text{m}^{-3})$
$\sigma = \text{stress}$ (Pa)
$\tau = \text{shear stress (Pa or N·s^{-2})}$
SUPPLEMENTARY MATERIAL (not obligatory)
Text
ACKNOWLEDGEMENTS (not obligatory)
Text
FUNDING (not obligatory)
Text
CONFLICT OF INTERESTS
Text
INSTITUTIONAL REVIEW BOARD STATEMENT
Text
REFERENCES (about 30 items)

Samples

Council Directive (1992) "Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora," *Official Journal*, L 206, Consolidated version 1.1.2007.

Eurostat (2011) Energy, transport and environment indicators. Brussels.

FAO (no date) *Soil maps and databases*. Rome: Food and Agriculture Organization. Available at: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/en/ (Accessed: January 27, 2023).

Hewedy, O.A. *et al.* (2022) "Plants take action to mitigate salt stress: Ask microbe for help, phytohormones, and genetic approaches," *Journal of Water and Land Development*, 55 pp. 1–16. Available at: https://doi.org/10.24425/jwld.2022.142299.

Kalaji, M. and Touchan, H. (2020) *Basics and applications of chlorophyll fluorescence in plant sciences*. Saarbrücken: Noor Publishing.

Kamiński, E. (ed.). (2011a) *Conservation tillage systems and environment protection in sustainable agriculture*. Falenty: Wydaw. ITP.

Kamiński, E. (ed.). (2011b) *Development trends in soil cultivation and fertilization engineering in the aspect of organic farming standards*. Falenty: Wydaw. ITP.

- Mioduszewski, W. (ed.) (2012) *Role of water management in protection of water quality in rural areas.* Falenty: Wydaw. ITP.
- Plesiński, K.K., Radecki-Pawlik, A. and Rivera-Trejo, F. (2022) "Using 1D and 2D computer models when predicting hydrodynamic and morphological parameters of a boulder block ramp: Poniczanka stream, Carpathians," *Journal of Water and Land Development*, Spec. Iss., pp. 34–48. Available at: https://doi.org/10.24425/jwld.2022.143719.
- Ralchenko, Y., Kramida, A. and Reader, J. (2011) *NIST atomic spectra database. Version 4.* Available at: http://www.nist.gov/pml/data/asd.cfm (Accessed: April 21, 2012).
- Roszkowski, A., Szeptycki, A. and Chigarew, O. (2011) "Conditions of technological progress in soil tillage," in E. Kamiński (ed.) *Development trends in soil cultivation and fertilization engineering in the aspect of organic farming standards*. Falenty: Wydaw. ITP, pp. 96–114
- Roszkowski, A., Szeptycki, A. and Chigarew, O. (2011) "Conditions of technological progress in soil tillage," in E. Kamiński (ed.) *Development trends in soil cultivation and fertilization engineering in the aspect of organic farming standards*. Falenty: Wydaw. ITP, pp. 96–114.
- Qian, S. (no date) *Sea garden city*. Archinect People. Available at: https://archinect.com/sisiqian/project/sea-garden-city (Accessed: December 18, 2019).
- Schlick, T. (2010) Molecular modelling and simulation: An interdisciplinary guide. Springer. Available at: https://link.springer.com/book/10.1007/978-1-4419-6351-2 (Accessed: July 5, 2011).
- Wałowski, G. (2022) "Assessment of polydisperse substrate flow in a fermentor for computational fluid dynamics modelling," *Journal of Water and Land Development*, Spec. Iss., pp. 1–7. Available at: https://doi.org/10.24425/jwld.2022.143715.
- Zawadzki, S. (2002) *Podstawy gleboznawstwa [Fundamentals of soil science]*. 2nd edn. Warszawa: PWRiL.