SUPPLEMENTARY MATERIAL

Experimental investigation of local scour under two oblong piers of bridge crossing a sharp bend river

Abdulrazaq K. Abdulwahd 🖂 💿, Jaafar S. Maatooq 💿

University of Technology, Civil Engineering Department, Al-sina'a St, P.O Box 19006, Baghdad, Iraq

Table S1. The comparison between the depth of the bed surface of the flume using a laser device and a point $gauge^{1}$

Point number	Depth (cm) measured using	
	point gauge	laser device
1	12.00	11.84
2	12.00	11.85
3	12.00	11.98
4	12.50	12.46
5	12.30	11.88
6	11.90	11.98
7	12.50	11.81
8	12.20	12.35
9	12.00	11.91
10	12.50	12.44
11	12.70	12.34
12	12.10	11.87
13	12.10	11.70
14	11.70	11.32
15	11.40	11.38
16	11.90	12.15
17	12.70	12.69
18	13.00	12.65
19	13.30	13.17
20	12.70	12.38
21	12.00	11.60
22	11.40	11.22
23	11.10	10.50
24	10.20	9.80
25	9.50	9.36
26	9.30	9.12
27	9.10	9.32
28	14.40	14.34

Point number	Depth (cm) measured using	
	point gauge	laser device
29	10.30	10.25
30	14.10	13.94
31	13.30	13.30
32	11.10	11.04
33	12.70	12.58
34	11.50	11.50
35	14.00	13.86
36	13.40	13.32

¹⁾ The correlation coefficient between the point gauge and laser device is equal 0.98.

Source: own elaboration.

Fig. S1. Bridge located at mid-section of upstream reach: a) bed topography around piers, b) transverse profile of bed from right to left at mid-section, c) longitudinal profile of bed along the left-side pier at mid-section, d) longitudinal profile of bed along the right-side pier at mid-section; source: own study

Fig. 2S. bridge located at a 0° angle: a) bed topography around piers, b) transverse profile of bed from the inner to outer bank at 0° angle, c) Longitudinal profile of bed along the outer bank at a 0° angle, d) Longitudinal profile of bed along the inner bank at a 0° angle

Fig. S3. Bridge located at a 30° angle: a) bed topography around piers, b) transverse profile of bed from the inner to outer bank at 30° angle, c) longitudinal profile of bed along the outer bank at a 30° angle, d) longitudinal profile of bed along the inner bank at a 30° angle; source: own study

Fig. S4. Bridge located at a 60° angle: a) bed topography around piers, b) transverse profile of bed from the inner to outer bank at 60° angle, c) longitudinal profile of bed along the outer bank at a 60° angle, d) longitudinal profile of bed along the inner bank at a 60° angle; source: own study

Fig. S5. Bridge located at a 90° angle: a) bed topography around piers, b) transverse profile of bed from the inner to outer bank at 90° angle, c) longitudinal profile of bed along the outer bank at a 90° angle, d) longitudinal profile of bed along the inner bank at a 90° angle; source: own study

Fig. S6. Bridge located at a 120° angle: a) bed topography around piers, b) transverse profile of bed from the inner to outer bank at 120° angle, c) longitudinal profile of bed along the inner bank at a 120° angle, d) longitudinal profile of bed along the outer bank at a 120° angle; source: own study

Fig. S7. Bridge located at a 150° angle: a) bed topography around piers, b) transverse profile of bed from the inner to outer bank at 150° angle, c) longitudinal profile of bed along the outer bank at a 150° angle, d) longitudinal profile of bed along the inner bank at a 150° angle; source: own study

Fig. S8. Bridge located at a 170° angle: a) bed topography around piers, b) transverse profile of bed from the inner to outer bank at 170° angle, c) longitudinal profile of bed along the outer bank at a 170° angle, d) longitudinal profile of bed along the inner bank at a 170° angle; source: own study

Fig. S9. Bridge located at a 180° angle: a) bed topography around piers, b) transverse profile of bed from the inner to outer bank at 180° angle, c) longitudinal profile of bed along the outer bank at a 180° angle, d) longitudinal profile of bed along the inner bank at a 180° angle; source: own study