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Abstract 

The limitation in approachability to rainfall data sources with an appropriate spatial-temporal distribution is a signifi-
cant challenge in different parts of the world. The development of general circulation models and mathematical algorithms 
has led to the generation of various rainfall products as new sources with the potential to overcome the shortage in data-
scarce basins. In this study, the performance of the PERSIANN-CCS and CMORPH satellite-based rainfall product, as well 
as the ERA5 and ERA-Interim reanalysis, was evaluated based on detection skill and quantitative metrics in a daily, month-
ly and seasonal time scales in the Dez basin located in the southwest of Iran. The basin has a wide topographic variation 
and scattered rain gauge stations. Overall results denote that the ERA5 dataset has the best performance in all statistic veri-
fication than other rainfall products. Based on the daily evaluation of all rainfall products, the false alarm rate (FAR) is 
higher than 0.5, so none of the datasets could capture the temporal variability of rainfall occurrence. This study has covered 
the western parts of the Zagros steep slopes in which the topographic conditions have a significant effect on the activity of 
rainfall systems. On a monthly scale, the mean value of the correlation coefficient (CC) for ERA5, ERA-Interim, PER-
SIANN-CCS, and CMORPH was equal to 0.86, 0.85, 0.51, 0.39, respectively. The results of seasonal evaluation suggested 
that all datasets have better rainfall estimation in autumn and winter, and the capability of all datasets dramatically de-
creased in the spring. The current paper argues that the ERA5 reanalysis typically outperforms ERA-Interim and can be 
considered as a reliable rainfall source in the future hydrological investigation in the southwest of Iran. 
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INTRODUCTION 

The use of high-resolution rainfall data in the primary 
input of rainfall-runoff models may lead to the increased 
predictive accuracy of these models and reliability of water 
resource management decisions, especially in data scarce 
regions. The network of radar-based meteorological sta-
tions and rain gauges are used as the two primary sources 
of rainfall databases. The dispersion and constraints of 
these stations are such that in some areas of the highest 
rainfall per year no measuring station is found [WESTRICK 

et al. 1999]; hence, the recorded data cannot accurately 
reflect the distribution of rainfall. The satellite-based and 
reanalysis grid data (rainfall products) are not limited to 
rain gauges and radar-based stations, and they are available 
in different parts of the Earth [KUCERA et al. 2013]. Be-
cause of their high spatial resolution, they can be used as 
a complementary source for rainfall gauge and radar data 
[YONG et al. 2012]. The use of rainfall products in a data-
scarce region is prevalent in hydrology, particularly as in-
put variables in a hydrological model [KHOSHCHEHREH et 
al. 2020; SUSENO, YAMADA 2020]. Nonetheless, these da-
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tasets have intrinsic uncertainties associated with the gen-
eration and utilization method [ISOTTA et al. 2015; PREIN, 
GOBIET 2017]. Therefore, to obtain reliable results useful 
in hydrological applications, it is indispensable to charac-
terize the accuracy of the rainfall estimate. 

In recent years, different studies have been conducted 
on validation of gridded rainfall estimates (rainfall prod-
ucts) across the world [DARAND, KHANDU 2020; NOGUEI-
RA 2020; TAREK et al. 2020]. The results of these studies 
showed that their performance differs in every part of the 
world. For example, in a study [XU et al. 2019] an evalua-
tion of variability was done using different rainfall da-
tasets, including ERA5 and ERA-Interim in Northern 
Great Plains. It was concluded that these products show 
better results in spring and fall than in summer and winter. 
Another study [CHEN et al. 2020] compared the perfor-
mance of satellite-based rainfall products, including PER-
SIANN-CCS, around the globe and it found that missed 
rainfall events over humid southern regions are one of the 
dominant error sources in the PERSIANN-CCS dataset. 
SKOK et al. [2016] investigated the rainfall intercompari-
son based on data obtained from various gridded datasets, 
including CMORPH, TRMM, ERA-Interim reanalysis da-
ta, and a single climate simulation using the WRF model in 
Europe and North Atlantic. They concluded that the ERA- 
-Interim data had a small dry bias over the land, whereas 
the WRF simulation had a sizeable wet bias equal to 
+30%, and CMORPH showed a significant and consistent 
dry bias of –21%. Both ERA-Interim and CMORPH prod-
ucts had a small wet bias of +8%, while the wet bias in the 
WRF was significantly larger and equal to +47% over the 
ocean. 

In Iran, limited evaluations have been performed to de-
termine the skill and potential of rainfall products and most 
of the studies in Iran were based only on the previous gen-
eration rainfall satellite datasets [DARAND et al. 2017; 
MOAZAMI et al. 2016]. For instance, in a work by MOA-
ZAMI et al. [2013], authors evaluated daily rainfall obtained 
from PERSIANN, TMPA 3B42V6, and TMPA 3B42RT 
products in 47 rainfall events between 2003 and 2006. Re-
sults of this evaluation showed that TMPA 3B42V6, with a 
mean bias of –1.47 mm, had a better performance in rain-
fall estimation in selected events. Another study [MOA-
ZAMI et al. 2016] assessed the performance of satellite 
rainfall products, including PERSIANN, CMORPH, and 
TMPA datasets under diverse climate conditions in Iran. 
The evaluations of different seasons indicate that the best 
performance for PERSIANN and TMPA products is during 
winter, while for CMORPH during autumn. However, the 
rainfall products potentiality in recent years is less ad-
dressed, particularly by reanalysis datasets such as ERA5. 
Most of the catchments in Iran can be considered as data-
scarce, especially in the southwest (study area) where in 
situ rain gauges are either sparse or scarce and accessibility 
to rainfall data of an appropriate temporal and spatial reso-
lution is regarded a challenge.  

Flooding as a natural hazard is the dominant climatic 
extreme events in the southwestern parts of Iran [SAMADI 
et al. 2019]. In the last decade, a number of floods have 
occurred in this region. One of challenges concerning this 

area is the lack of the adequate rain gauge network. Be-
sides, specific geographical conditions of this region have 
caused critical challenges to obtain rainfall data of an ap-
propriate temporal and spatial resolution; hence, it is high-
ly important to examine the potential of rainfall estimate 
data, such as satellite-based and reanalysis datasets. 

The main research objective is to investigate the daily, 
monthly, and seasonal rainfall, considering validation 
measures, such as the spatial distribution of quantitative 
metrics and rainfall detection skill at the Dez Basin in the 
southwest of Iran. Additionally, the current study focuses 
on the inter-comparison of two satellite-based rainfall da-
tasets (PERSIAN-CCS and CMORPH) and ERA5 and 
ERA-Interim reanalysis data with rain gauge observations 
over nine years between 2008 and 2017. 

MATERIALS AND METHODS  

STUDY AREA  

The Dez Basin is located in the southwest of Iran be-
tween 10´48° and 21´50º east longitude 34´31° and 7´34° 
north latitudes (Fig. 1). The total area of the basin is 21720 
km2 and the maximum and minimum elevation of 4124 m 
and 190 m, respectively. Based on the Köppen–Geiger 
climate classification index [PEEL et al. 2007], the study 
area consists of two climatic zones, i.e. hot-summer Medi-
terranean climate (Csa) and cold semi-arid climate (Bsk). 
The west part of the basin is in the Csa climate zone while 
the east in the Bsk climate zone [RAZIEI 2016]. Precipita-
tion in the basin appears in the form of rainfall, whereas 
snowfall is rare. KIANI et al. [2019] have shown that the 
moisture formation and transfer originates from the Arab 
and Red Seas and moves to western parts of Iran in the 
form of a low humidity pressure system. 

The topography of the Dez Basin is complex due to the 
presence of the Zagros Mountains. Furthermore, the moun-
tains are a natural barrier to Sudanese systems, establishing 
suitable conditions for a fast ascent of air and creation and 
development of cumulus clouds in the eastern and elevated 
parts of the Dez Basin. This leads to a major variation in 
rainfall on steep slopes, higher than in other areas. 

The mean annual rainfall in the north and east of the 
study area is generally higher than in other areas. As for 
the temporal distribution of rainfall, 48.8% of rainfall oc-
curs in winter, followed by 30.6% occurring in autumn, 
20.4% in spring, and only 2.9% in summer (Khuzestan 
Water and Power Authority). Figure 2 illustrates the 
amount of daily and monthly rainfall data obtained from 
rain gauge stations from January to December in 2008–
2017. In this area, the average values of monthly rainfall 
from November to April have been higher than in other 
months of the year. Furthermore, the average maximum 
daily rainfall corresponding to October and November is 
35 and 26 mm, respectively. Moreover, the absolute max-
imum daily participation occurs in April and October. In 
contrast, the average minimum daily rainfall is recorded in 
summer between May and August. The mean annual dis-
tribution of rainfall occurrence with varying intensity 
thresholds based on the World Meteorological Organiza- 
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Fig. 1. The Dez River watershed and spatial distribution of rain gauges; source: own elaboration 

 
Fig. 2. Daily and monthly rainfall data from rain gauge stations (Jan–Dec during 2008–2017); source: own elaboration 

tion (WMO) recommendation in the whole basin was cal-
culated and for rainfall intensities of 2–5 mm, 5–10 mm, 
10–20 mm and >20 mm these are 25.3%, 25.2%, 28% and 
21.5% respectively. As presented, rainfall is the most fre-
quent in the intensity class of 10–20 mm. 

In the long-term evaluation of hydrological trends, in-
cluding 290 floods in the study area from 1955 to 2005 by 
[SAMADI et al. 2019), the authors indicated that the peak 
flow in 17 flood cases from 1991 to 2005 (52% of the total 
floods) was over 2900 m3∙s–1, compared to the average an-
nual flow of 258 m3∙s–1. This basin is vital as it supplies 
water for households, agriculture, and industry, as well as 
hydropower generation, in a highly populated area down-
stream. 

DATA RESOURCE 

This section describes rainfall products along with the 
ground-based rainfall data. The period of the study was 
chosen between 2008 and 2017, since all observation and 
estimation datasets were complete and available. 

Observation data 

Rainfall data were collected from the Khuzestan Water 
and Power Authority (KWPA). Daily rainfall data related 
to the Dez Basin were obtained from 15 rain gauge sta-
tions. The KWPA regularly conducts quality control 
screening of ground station data, which includes tests for 
extreme values, internal and spatial consistency, time- 
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-series graph, and double mass analysis. The study period 
was selected based on the availability and completeness of 
the rain gauge data. Coordinates of the stations are pre-
sented in Table 1. 

Table 1. Geographic coordinates of observational rainfall gauge 
stations 

Station name Longitude (E) Latitude (N) Elevation 
(m.a.s.l) 

Tireh-Doroud 49°03ʼ00” 33°27ʼ36” 1 450 
Talazang 48°46ʼ00” 32°49ʼ00”   440 
Dem Dez 48°27ʼ00” 32°33ʼ00”   525 
Tanga Pang Bakhti 48°46ʼ00” 32°56ʼ00”   600 
Silakhor Rahimabad 48°48ʼ00” 33°46ʼ48” 1 490 
Kakolstan Abbarik 49°49ʼ05” 33°13ʼ48” 2 470 
Sabzab Chamchit 48°57ʼ04” 33°22ʼ48” 1 290 
Azna Aliabad 49°24ʼ00” 33°24ʼ00” 1 830 
Azana Chamzaman 49°24ʼ00” 33°24ʼ00” 1 830 
Darh Takht 49°22ʼ05” 33°21ʼ36” 1 890 
Bakhti Kakolstan 49°39ʼ08” 33°01ʼ12” 1 780 
Kazamabad Kakolstan 49°40ʼ05” 33°09ʼ00” 2 000 
Golrod Vanae 48°34ʼ05” 33°54ʼ00” 2 000 
Kamandan 49°25ʼ05” 33°18ʼ00” 1 930 
Sorkhab Kashvar 48°37ʼ05” 33°07ʼ48”   770 
Source: own elaboration. 

To better describe the distribution of frequency and 
amount of observed rainfall in the basin, the data were cat-
egorized and presented in Figure 3. In this work, wet (oc-
currence) days have been disaggregated from dry days 
(non-occurrence) using a determined rainfall intensity 
threshold of 1 mm∙day–1. The categorized rainfall frequen-
cy and the distribution between west and east of the Dez 
 

 

 
Fig. 3. Mean categorized observed rainfall amount (top)  

and frequency (bottom) for West and East of the Dez Basin 
(2008–2017); source: own elaboration 

Basin are presented in Figure 3. Based on the frequency 
and spatial distribution, in the east of the basin, rainfall 
class 5–10 mm and in the west 10–20 mm class show the 
highest frequency in comparison with other classes. The 
highest rainfall occurs in the class of more than 20 mm. 

Rainfall products 

The four rainfall products (PERSIANN-CCS, 
CMORPH, ERA5, and ERA-Interim) in this assessment 
are selected based on three factors: (i) structure of rainfall 
products including algorithm and models approach for data 
creation, (ii) access time, and (iii) Product Resolution. 

PERSIANN satellite-based data is a rainfall estimate 
algorithm that uses a remote sensing algorithm working 
according to an artificial neural network model [HSU et al. 
2002]. Base inputs of this model include the temperature 
above clouds generated by images taken from the infrared 
spectrum of the cloud by geosynchronous satellites, includ-
ing GoEs8 and GoEs9. The images taken by geosynchro-
nous satellites have high resolution, but the magnitude of 
the spatial resolution of these images is low because the 
distance from the ground is much higher than that of polar 
satellites. Using these images, the PERSIANN estimates 
rainfall intensity in time [HONG et al. 2005]. PERSIANN- 
-CCS data used in this study included a higher generation 
of PERSIANN satellite-based data. The PERSIANN-CCS 
satellite-based data generation algorithm can classify 
clouds based on their height, geographical range, and tex-
ture. The presence of an algorithm with a varied threshold 
in the cloud classification is considered the main feature of 
the PERSIANN-CCS, contrary to the assumption of a con-
stant threshold in cloud classification [SOROOSHIAN et al. 
2000]. The varied threshold system can separate and iden-
tify each piece of cloud, and cloud pieces can be classified 
based on the texture, geometric properties, dynamic evolu-
tion, and overcloud height. This classification helps to as-
sign the rainfall to pixels in each cloud so that in each case, 
a specific curve describes the relationship between rainfall 
and light temperature. PERSIANN-CCS data are available 
instantly with a time step of 1, 3, and 6 hours, daily, with 
0.04° (degree) resolution on the following website [CHRS 
undated]. 

The CMORPH is another source of satellite-based data 
that have been provided by the NOAA Climate Prediction 
Center with a precision of 0.25° (degree) since 3 December 
2002. The desired datasets can be accessed by NOAA [un-
dated]. The CMORPH model is a motion vector based 
method which uses infrared images at half an hour time 
step to predict the precision of rainfall from inactive mi-
crowave data. The shape and duration of rainfall between 
microwave sensor scans is also corrected over time by 
a linear trend [JOYCE et al. 2004]. 

Founded in 1975, the ECMWF (European Centre for 
Medium-Range Weather Forecasts) is a research institute 
specialized in weather services. ERA-Interim is a reanaly-
sis of the global atmosphere since 1979 to the present. The 
main objective of the ERA-Interim was to enhance specific 
aspects of the previous generation of the ECMWF, in par-
ticular hydrological cycle representation, stratospheric cir-
culation quality, bias handling, and observation system 
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changes [BERRISFORD et al. 2009]. The reanalysis data 
have been created using a fixed system that is dynamically 
compatible with data assimilation and a model in which all 
available observation data are used [DIACONESCU et al. 
2015]. The ERA-Interim data is the fourth generation of 
reanalysis data provided by the ECMWF. Rainfall data 
have been collected from 1 January 1979, to 30 June 2014, 
with spatial and temporal resolutions of 0.75×0.75 and  
6-hour interval acc. to ECMWF [2017]. 

ERA5 is the latest generation of ECMWF atmospheric 
reanalysis products, which is available from January 1950 
to the present. Furthermore, as of October 2018, it has been 
publicly accessible. ERA5 offers a higher spatial and tem-
poral resolution than its predecessor ERA-Interim. Moreo-
ver, it provides hourly estimates of a large number of at-
mospheric, land, and oceanic climate variables. The dataset 
covers the surface of the Earth with a grid size of 30 km. In 
addition, the manifestation of tropical processes have im-
proved dramatically in ERA5, including better representa-
tion of tropical cyclones, better global equilibrium of rain-
fall and evaporation, rainfall on the land and in deep equa-
torial regions, and more consistent sea surface tempera-
tures and sea ice [HENNERMANN, BERRISFORD 2018]. 
A more detailed explanation of the ERA5 reanalysis and its 
difference with the previous generations can be found in 
[ECMWF 2017; HERSBACH, DEE 2012]. 

Daily accumulative rainfall was generated by adding 
hourly rainfall values. The gridded dataset time values are 
based on the Coordinated Universal Time (UTC). Due to 
geographic time zone difference, the time dimension was 
shifted according to the local time zone. In this study, the 
observed data (from the Khuzestan Water and Power Au-
thority (KWPA) are considered independent from chosen 
rainfall products because ERA5 and ERA-Interim datasets 
do not include gauge rainfall measurements, and the se-
lected stations data are not reported or collected to be used 
for calibration or incorporation by chosen rainfall products 
(Tab. 1). 

METHODS  

A grid-to-point comparison method was used to com-
pare gridded rainfall products with data from 15 rain gauge 
stations across the study area. In the Dez River Basin with 
sparse rain gauge stations, the accuracy of the generated 
gauged-gridded data using the areal comparison method 
can be uncertain; therefore, the grid-to-point method was 
applied for the validation of rainfall products [NGUYEN et 
al. 2018]. The value of each rainfall product was interpo-
lated at each station location using the bilinear interpola-
tion method [FAN et al. 2020; HENN et al. 2018]. After the 
calculation of all performance indices, the inverse distance 
weighting method (IDW) was used to produce a spatial 
distribution of evaluation indices. The IDW is a commonly 
used geostatistical method in many studies [CHANG 2019], 
and it is accurate enough for interpolation or providing 
spatial distribution of different data in mountainous regions 
[CHEN, LIU 2012]. Due to scarcity and poor spatial distri-
bution of the station gauges, the resolution of 0.1 degree 
was used. The daily, monthly, and seasonal evaluations 

were performed in the period between 21 March 2008 and 
21 March 2017. This period was selected because of the 
completeness of data recorded in the rainfall station in the 
Dez basin. In order to examine the accuracy of rainfall 
products data on rainfall of varying intensity, especially 
heavy rains that tend to cause floods, the rainfall intensity 
has been categorized into four classes (1–5 mm∙day–1, 5–10 
mm∙day–1, 10–20 mm∙day–1 and >20 mm∙day–1) in accord-
ance with the WMO recommendation and the modification 
in compliance with the frequency of local rainfall with 
varying intensity (Fig. 3) [BROWN 2006; CAWR 2015]. 

The assessment of the four rainfall products was based 
on the general statistical metrics, including categorial bias 
and rainfall detection skill following the recommendation 
of WMO [BROWN 2006] (categorical statistical indices) 
(Tab. 2). The statistical criteria include the Spearman cor-
relation coefficient (CC), root mean square error (RMSE), 
and bias (Eq. 1 to Eq. 3, respectively). They were used to 
quantitatively compare the rainfall product relative to the 
rainfall observations [SHARIFI et al. 2016]. The Spearman 
rank correlation coefficient (CC) measures the linear mon-
otonic association between rainfall products and observed 
data based on their ranks within the value range between − 
1 and 1 [CAWR 2015]. Bias is a representation of the sys-
tematic bias of a chosen rainfall dataset. Its positive and 
negative values represent over and under-estimation of the 
rainfall amount. RMSE measures the mean square error 
magnitude of the rainfall product. The smaller the RMSE 
value, the closer are rainfall product measurements to the 
observed data. To determine the rainfall detection skill, 
common categorical statistical indices, including the prob-
ability of detection (POD), false alarm rate (FAR), and 
critical success index (CSI), were utilized (Eq. 4 to Eq. 6, 
respectively) [EBERT et al. 2007]. POD represents the ratio 
of rainfall events that are accurately detected by a rainfall 
product among all actual rainfall events. FAR describes the 
ratio of events when rainfall products fail to materialize. 
POD ignores the false alarms and is sensitive to hits and 
should be used in conjunction with FAR. CSI represents  
 
Table 2. Metric statistical indicators 

Equation 
number Formula Optimal 

value 

1 𝐵𝐵𝐵𝐵 =
∑ (𝑃𝑖 − 𝑂𝑖)𝑛
𝑖=1

𝑛
 0 

2 𝐶𝐶 =
∑ �𝑅𝑖 − 𝐵��𝑅𝑖 − 𝑅�𝑛
𝑖=1

�∑ �𝐵𝑖 − 𝐵�
2𝑛

𝑖=1 �∑ �𝑅𝑖 − 𝑅�
2𝑛

𝑖=1

 1 

3 𝑅𝑅𝑅𝑅 = �∑
(𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
 0 

4 𝑃𝑂𝑃 =
𝐻

𝐻 +𝑅
 1 

5 𝐹𝐹𝑅 =
𝐹

𝐻 + 𝐹
 0 

6 CSI =
𝐻

𝐻 + 𝑅 + 𝐹
 1 

Explanation: P = data (rainfall product), O = observed data, i = event 
numerator, n = number of samples; for CC: R = the position of the esti-
mates values, arranged in ascending order, B = the position of the ob-
served values, arranged in ascending order. 
Source: own elaboration. 
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the total proportion of rainfall events that are correctly 
identified by the rainfall products. POD, FAR, and CSI 
values vary from 0 to 1. The best possible score for POD 
and CSI is one and zero for FAR. Misses (M) describes the 
number of observations by the rain gauges which are not 
detected by the rainfall product. Hits (H) denotes the num-
ber of times when the occurrence of rain is correctly de-
tected by the rainfall product. A false alarm (F) denotes the 
number of times that rain occurred, not observed by the 
rain gauges but detected by the rainfall product. 

RESULTS 

PERFORMANCE EVALUATION BASED  
ON DETECTION METRICS 

In this section, daily and seasonal data of rainfall 
products were evaluated based on FAR, POD and CSI. It 
should be mentioned that in a seasonal time scale, rainfall 
data were not accumulated, and all daily data from a spe-
cific season were separated and analysed. Figure 4 shows 
the spatial distribution of POD, FAR, and CSI indicators. 
Values of these indicators are given in Figure 4, according 
to data recorded seasonally in Dez Basin stations. Figure 4  
 
 

shows that the ERA-Interim has the highest POD value 
compared to other data. Also, Figure 5 demonstrates that 
this dataset performs better in seasons of autumn and win-
ter than in spring. PERSIANN-CCS and CMORPH models 
show the highest POD in winter, compared to other sea-
sons. Figure 4 shows that the ERA5 has the lowest FAR 
compared to other rainfall datasets. Based on Figure 5, 
ERA5 and ERA-Interim perform closely in autumn and 
winter and have a low FAR value, and in contrast, PER-
SIANN-CCS and CMORPH have the highest FAR in au-
tumn and winter. Moreover, this index was found to be 
high in spring for all four models. The value of the CSI 
index is higher for ERA5 and ERA-Interim than PER-
SIANN-CCS and CMORPH (Fig. 4). 

In winter and autumn, in the case of the ERA5 dataset 
closely followed by ERA-Interim, the CSI index has the 
highest value, whereas for PERSIANN-CCS and 
CMORPH, it is highest in winter and autumn in compari-
son to spring. Considering the spatial distribution of POD, 
CSI, and FAR indicators shown in Figure 4, it is concluded 
 that the values of these indicators for each of the four grid 
datasets are such that the values of POD and CSI are re-
duced, and FAR value increased from west to east of the 
watershed with the increase of topographic complexity and 
 

 
Fig. 4. Spatial distribution of probability of detection (POD), false alarm rate (FAR), and critical success index (CSI)  

for ERA5, ERA-Interim, PERSIANN-CCS, and CMORPH rainfall datasets; source: own study 
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Fig. 5. Spatial variation of detection indicators in spring, winter, and autumn; POD, FAR and CSI as in Fig. 4; source: own study 

altitude. Therefore, seemingly topographic and elevation 
changes reduce the quality of detection indicators in the 
study area. 

QUANTITATIVE RAINFALL ESTIMATION SKILL 

In short, a detailed assessment was performed on four 
grid datasets, including satellite-based rainfall reanalysis of 
CMORPH, PERSIANN-CCS, ERA5, and ERA-Interim on 
daily, monthly, and seasonal time scales. For the seasonal 
evaluation of these data, data on spring (21 March to 20 
June), autumn (21 September to 20 December) and winter 
(21 December to 20 March) were reviewed; the summer 
was excluded from the review, considering climatic condi-
tions of the area, as well as the lack of rainfall in this sea-
son (Fig. 2). Figure 6 shows the spatial distribution of the 
correlation coefficient for rainfall estimates regarding daily 
and monthly rainfall observations. Figure 6 illustrates that 
the ERA5, closely followed by ERA-Interim, shows 
a higher correlation with observational data at most obser-
vation stations compared to PERSIANN-CCS and 
CMORPH products. The spatial distribution of the correla-
tion coefficient for the dataset in Figure 6 shows the 
change in the correlation coefficient of different rainfalls 
with topographic changes, as for rainfall in the reanalysis 

models of ERA5 and ERA-Interim, the correlation coeffi-
cient of rainfall reduced from west to east of the basin with 
increasing altitude and topographic complexity. This pro-
cess is reversed for rainfall in the PERSIANN-CCS model 
such that the correlation coefficient increased from west to 
east. 

According to the spatial distribution of correlation co-
efficients on a monthly scale (Fig. 6), it was found that on 
the monthly scale like the daily scale, the ERA5 model had 
a higher correlation than that of other rainfall products. So, 
for ERA5, ERA-Interim, PERSIANN-CCS, and CMORPH 
models, the maximum correlation on the monthly scale is 
equal to 0.93, 0.92, 0.64 and 0.52, respectively. 

Figures 7 and 8 show the values of statistical indica-
tors for all stations on a daily and seasonal basis for all 
datasets. According to the daily data, Figure 7 shows var-
ied bias values at all stations ranging from 0.56 to –1.6 
mm. They indicate the underestimation of rainfall relative 
to observations for ERA-Interim, PERSIANN-CCS and 
CMORPH and overestimation by the ERA5 product which 
can be attributed to the mountainous area of the Dez Basin 
and presence of an orographic effect that is consistent with 
results of [MOAZAMI et al. 2013] who showed the oro-
graphic effect on varied bias near Zagros Mountains. At 
the same time, ERA5 with a mean bias of 0.1 mm, RMSE  
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Fig. 6. Spatial distribution of daily and monthly correlation coefficient (CC) for 2008–2017; source: own study 

 
Fig. 7. Metric indicators of rainfall estimates on a daily and monthly scale; CC = correlation coefficient,  

RMSE = root mean square error; source: own study 

of (5.49 mm), and CC of (0.47) provide a better estimate of 
the daily rainfall than ERA-Interim, PERSIANN-CCS, and 
CMORPH. 

The study of different statistics and PERSIANN-CCS 
data has shown the high uncertainty of rainfall on a daily 
scale in this basin. Figure 7 shows different statistical val-
ues on the monthly scale for each grid rainfall dataset. 
Based on these values, the performance of PERSIANN-
CCS and CMORPH has significantly changed compared to 
the daily scale. It indicates that PERSIANN-CCS and 
CMORPH perform better in estimating monthly rainfall 
than daily rainfall. Meanwhile, ERA5 and ERA-Interim, 

with CC of 0.86 and 0.85 respectively, have shown a better 
estimation than PERSIANN-CCS and CMORPH on 
a monthly scale. Figure 8 with data for spring, autumn, and 
winter shows that the four datasets (PERSIANN-CCS, 
CMORPH, ERA5, and ERA-Interim) had no acceptable 
performance in the spring season, and the results of the 
daily rainfall estimate in this season showed high uncer-
tainty based on all four datasets. Considering the climatic 
and geographical situation of the basin in spring, as well as 
the extreme amount of rainfall in this season, the poor per-
formance of these products is understandable. 
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Fig. 8. Metric indicators of rainfall estimates in the winter, spring, and autumn; source: own study  

Furthermore, Figure 8 shows the evaluation of all four 
datasets in autumn. As it was discussed, ERA5 has a better 
estimate of rainfall in this season compared to other prod-
ucts. The PERSIANN-CCS dataset with the lowest correla-
tion at most stations and mean RMSE of 3.84 mm had less 
precision than other models for the spring season. At the 
same time, ERA5 with higher mean CC and lower RMSE 
value performs better than other datasets in this season. 
The results of comparisons performed between all four 
datasets in winter, presented in Figure 8, have shown that 
similarly to autumn, ERA5 with a maximum value of CC 
(0.622) has better performance than the other datasets. 
ERA5 generally overestimates the rainfall value in winter, 
while, the bias value has always been negative for PER-
SIANN-CCS and CMORPH at all stations in this season. 

The spatial distribution of bias based on the rainfall of 
varying intensity is presented in Figure 9. In the rainfall 
class 1–5 mm∙day–1, ERA-Interim with an average bias of 
–0.17 has the best performance and then ERA5, PER-
SIANN-CCS, and CMORPH with an average bias of 0.9,  
–1.7 and –3.05. Interestingly, the values of all products 
except ERA5 underestimate the rainfall value. In the 5–10 
mm∙day–1 rainfall class, from best to worst, the average 

bias values for ERA5, ERA-Interim, PERSIANN-CCS, 
and CMORPH are –0.9, –2.2.7, –5.8 and –6.7 respectively. 
It actually shows the underestimation in all products. As 
shown in Figure 9, the bias value in the 1–10 mm∙day–1 
rainfall class (first two classes) for the ERA5 dataset tends 
to change from overestimation to underestimation as we go 
from the west to the east of the watershed. 

In the 10–20 mm∙day–1 rainfall class, ERA5 outper-
forms all other products with an average bias value of –
5.99. Average values of bias in the rainfall class >20 
mm∙day–1 have significantly deteriorated, and in this class, 
ERA5 with a mean bias value of –17.8 performs best. As 
shown in Figure 9, the bias values in all rainfall classes 
decrease from west to east, which, as noted in previous 
sections, is associated with an increased topographic com-
plexity and elevation in the region. The performance of 
PERSIANN-CCS, followed by CMORPH datasets, is the 
worst in all classes, while the performance of the other 
products is relatively good for rainfall classes ranging from 
1 to 20 mm∙day–1. In the 1–20 mm∙day–1 rainfall class, the 
ERA5 dataset provided acceptable accuracy, but in the 
rainfall class above 20 mm∙day–1, the performance de-
creased significantly and the results were unreliable.  
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Fig. 9. Spatial distribution of bias values based on the rainfall of varying intensity; source: own study 

DISCUSSION 

The comparison of data on the estimated daily tem-
poral pattern of rainfall with those of PERSIANN-CSS, 
CMORPH, ERA5, and ERA-Interim collected from the 
stations was based on three detection indicators, including 
false alarm rate (FAR), critical success index (CSI) and 
probability of detection (POD). The results of comparison 
regarding the spatial distribution of the indicators (Fig. 4) 
showed a significant relationship between a topographic 
complexity and performance of the mentioned datasets. 
The performance of rainfall products is generally poor in 
high elevation regions. This phenomenon is consistent with 
the findings of studies done by DERIN and YILMAZ [2014] 
and ZAMBRANO-BIGIARINI et al. [2017]. In the eastern part 
of the basin with a higher topographic complexity, ERA5, 
ERA-Interim, CMORPH, and PERSIANN-CSS showed 
the value of FAR more than 35%, 46%, 74%, and 89% re-
spectively, while POD and CSI were reduced significantly. 
Among all datasets, PERSIANN-CCS with FAR variation 
range between 85% and 91 showed the lowest skill in the 
daily temporal pattern estimation of rainfall at all stations 
of the Dez River Basin, while the ERA5 as the best dataset 

showed the range of 18% to 43% for the same indicator all 
over the basin. Further analysis showed that in addition to 
the topography, the behaviour of each dataset has signifi-
cantly changed in particular seasons. The performance of 
ERA5 regarding the temporal pattern estimation in autumn 
and winter is substantially higher than the others, whereas 
FAR is reduced to less than 20% while the PERSIANN- 
-CSS and CMORPH showed FAR higher than 89% and 
81%, respectively. In the autumn and winter, the POD var-
iation range for ERA5 and ERA-Interim was between 42% 
and 51%, while the range was less than 20% for other 
products. In spring, the performance of all datasets is dra-
matically reduced so that the range of variation in all indi-
cators increases (Fig. 5). High-intensity rainfall is common 
in the southwestern Zagros Mountains in spring [ALIJANI 
HARMAN 1985]. In mountainous regions, most of the rain-
fall occurs in spring due to upslope convection and espe-
cially in the southern Zagros Mountains due to the mon-
soonal intrusion [ALIJANI et al. 2008]. Therefore, particular 
territorial atmospheric conditions that induce these types of 
rainfall are not properly represented by the rainfall  
products. 
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Table 3. Comparison between the results of the current study and other studies 

Reference Study area Period CC RMSE  POD Bias 
This study Dez Basin, Iran 2008–2017 0.62 3.7–8.2 0.4 –0.35 
SATGÉ et al. [2020] West Africa 2000–2004 0.65 – – 0.3–0.8 
YAO et al. [2020] China 1980–2014 0.81 1.13 – 0.47 
XU et al. [2019] Canada, Northern Great Plains 2002–2015 0.71 2.78 – 0.11 
TAN and SANTO [2018] Malaysia 2014–2016 0.5–0.6 12.94–14.93 0.86–0.89 – 
HÉNIN et al. [2018] Iberian Peninsula 2000–2008 0.23–0.42 4–17 – –0.3 
LIU et al. [2018] Mainland China 1980–2012 0.82 62% – 0.14 
WONG et al. [2017] Canada 1979–2012 0.49–0.56 3.65–5.12 – –1.2–1.0 
WANG et al. [2017]  Mekong River Basin, Thailand 2016 0.57 – 0.72  
YUAN et al. [2017] Chindwin River Basin, Myanmar 2016 0.22–0.32 9.1–24.7 0.12–0.21  
Explanations: CC = Spearman correlation coefficient, RMSE = root mean square error, POD = probability of detection, bias = the difference between this 
estimator's expected value and the true value of the parameter being estimated. 
Source: TAN and DUAN [2017] and TAN and SANTO [2018], modified. 

The spatial distribution of FAR for all datasets have 
shown values higher than 50%, and POD decreased to less 
than 20% for all datasets. This means that the performance 
of all datasets in the transition from dry to wet months is 
better than in the transition from wet to dry months. The 
results of the study suggest that the ERA5 has the best per-
formance regarding the estimation of the temporal rainfall 
pattern. All datasets had better performance in regions with 
less topographic complexity and during winter and autumn 
seasons. 

Similarly to the detection metrics, statistical metrics of 
the datasets show the same pattern concerning the topo-
graphic variation. As shown in Figure 9, the accuracy of 
rainfall products deteriorates, moving from west to east of 
the basin, due to the presence of Zagros slopes. Further-
more, the performance of reanalysis datasets tends to be 
better compared to the satellite-based products. The spatial 
distribution of the correlation coefficient related to daily 
data indicated that the ERA5 has a much higher correlation 
than the PERSIANN-CSS and the CMORPH (Fig. 6). In 
the monthly time scale, the correlation coefficient of all 
datasets significantly improved together with the ERA5 
and ERA-Interim variation ranges. Similar to the daily 
time scale, the correlation of data sets reduced in areas of 
higher elevation and more topographic variation. General-
ly, all datasets were more reliable and had better perfor-
mance on monthly and seasonal time scales. Rainfall in 
wet seasons was estimated better than in dry seasons. 
Among the datasets, ERA5 and ERA-Interim showed the 
best rainfall estimate, whereas the CMORPH followed by 
the PERSIANN-CCS presented the weakest performance. 

To compare the performance of ERA5 data worldwide, 
we updated and adopted the table used by TAN and DUAN 
[2017] (Tab. 3). Generally, rainfall products with the corre-
lation coefficient of more than 0.7 and a relative bias rang-
ing from –10% to +10% are regarded as dependable 
sources of rainfall data [CONDOM et al. 2011]. Based on 
the results from studies by WONG et al. [2017], HÉNIN et 
al. [2018], LIU et al. [2018], XU et al. [2019], SATGÉ et al. 
[2020], YAO et al. [2020], a strong correlation can be 
found in China between the ERA5, ERA-Interim and ob-
servation gauges [LIU et al. 2018; YAO et al. 2020], 
whereas a weak correlation (CC < 0.5) is reported in the 
Iberian Peninsula [HÉNIN et al. 2018]. Generally, the aver-
age correlation between ERA5 and ERA-Interim data and 

rainfall observation stations is between 0.5 and 0.7; there-
fore, additional effort is needed to enhance the algorithms 
used in ERA data series as a rainfall product. 

CONCLUSIONS 

This paper aimed to study the possibility of using rain-
fall products as new sources of rainfall data with the de-
sired length of time series and reliable spatial distribution 
suitable for the hydrological application. Hence, the spatio-
temporal assessment of four rainfall products, including 
PERSIAN-CSS, CMORPH, ERA5, and ERA-Interim, was 
conducted over the Dez River Basin of a high topographic 
variation on a daily, monthly and seasonal time scales in 
2008–2017. Readings from the rain gauge stations were 
taken as reference. To determine their capabilities, several 
statistical parameters were used, including temporal pattern 
(POD, FAR, CSI) and the quantity (CC, RMSE, and bias 
(continuous and categorial)) of the rainfall. These are 
commonly applied in hydro-climatic studies. Considering 
the results of the study, the study led to the following con-
clusions. 

Generally, the ERA5 and ERA-Interim perform better 
than the satellite-based rainfall products (PERSIANN-
CCS, CMORPH), and the PERSIANN-CCS followed by 
the CMORPH have the worst performance in all assess-
ments. However, the spatial variability of daily rainfall was 
not well reflected by rainfall products, particularly in the 
high-elevation eastern parts of the basin. In contrast, all 
rainfall products display adequate performance in monthly 
rainfall measurements. Also, the weak correlation between 
rainfall products and the rainfall gauges at a daily scale has 
demonstrated that additional enhancement and reforms 
should be carried out in rainfall product algorithms. 

The ERA5 and ERA-Interim perform better during au-
tumn and winter than the satellite-based products, while all 
rainfall products were poorly estimated during spring  
in daily rainfall measurements. This means that the per-
formance of all datasets in the transition from dry to wet 
months is better than in the transition from wet to dry 
months. 

The ERA5, with a mean CSI value of about 33% and 
a mean FAR value of 29%, indicates better rainfall detec-
tion skill than other products. On the other hand, satellite-
based products have a high FAR in all seasons. The ERA5 
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has a high capability to capture the temporal pattern of 
rainfall during fall and winter. The ERA5 and ERA- 
-Interim perform closely to each other in the selected re-
gion; however, the results indicate that the ERA5 dataset 
outperforms ERA-Interim in most indicators, which 
reflects the latest improvement in the ECMWF data series. 

Due to the importance of heavy rainfall prediction for 
the flood hazard management, the rainfall has been classi-
fied based on its intensity. In the 2–20 mm∙day–1 rainfall 
class, the ERA5 dataset provides reasonable accuracy, but 
in the rainfall class above 20 mm, the performance of all 
products decreases significantly, and the results are unreli-
able. Therefore, any evaluation performed based on data 
from the rainfall class above 20 mm∙day–1 should be used 
with caution, especially in rainfall-runoff models. 

All of the chosen rainfall products tend to underesti-
mate the rainfall value except the ERA5 dataset. These 
results could provide a better estimation and more realistic 
future evaluation. 

The major changes of the slope elevation of the Zagros 
Mountains in the east of the Dez Basin provide a suitable 
condition for the development of convection clouds that 
cause heavy rainfall in the area. These outcomes can lead 
to changes in bias values of rainfall products, increase the 
false alarm ratio and reduce the skill measure for rainfall 
variations. There is a significant relationship between 
a topographic complexity and the performance of the da-
tasets; in the future investigation, the relationship between 
the rainfall products pattern and topographic variables, 
including slope, elevation, and distance from the sea, 
should be examined in this basin. 

Regardless of the ERA5 moderate performance at the 
daily time scale because of latent in data availability, it is 
not a good candidate for the real-time application. Alt-
hough this weakness translates into the fundamental 
strength of the satellite-based products, as discussed in 
previous sections, the study area is flood-prone, and the 
lack of the adequate observed daily rainfall is one of the 
main challenges for the proper setup of rainfall–runoff 
models; therefore, a hydrological assessment of rainfall 
products should be considered in the future research. 

These findings will be useful for the rainfall product 
development and can provide an obvious insight for the 
future investigation. Additionally, it can draw a clear pic-
ture of alternative and supplement rainfall observation al-
ternatives for hydrological applications, in particular, in 
areas that suffer from the lack of sufficient data or scat-
tered stations. 

Finally, it should be mentioned that the results of this 
study were obtained according to the total rainfall estimat-
ed by rain gauge stations distributed in the Dez Basin. In 
general, the study provided a comprehensive evaluation of 
PERSIANN-CCS, CMORPH, ERA5, and ERA-Interim 
grid data on different time scales. The study offers a rea-
sonable basis for using these rainfall datasets in a highly 
topographically heterogeneous and data-scarce basins, as 
well as it provides a useful insight for the hydrologists to 
determine errors in these datasets. 
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