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Abstract

Groundwater is a vital resource for domestic, agricultural, industrial activities and ecosystem services. Despite its multi-
ple purposes, the resource is under significant threat owing to increasing contamination from anthropogenic activities and
climate change. Hence, in order to ensure the reliability and sustainable use of groundwater for the present and future gener-
ations, effective management of groundwater (quality and quantity) is highly important. This can be achieved by identifying
areas more vulnerable to contamination and implementing protective measures. The present study aims at assessing the vul-
nerability of groundwater using GIS-based DRASTIC index in the Quaternary catchment (A21C) within Limpopo River
Basin. The vulnerability index varied from 87 to 207. About 53.6% (408 km?) of the catchment area also exhibited high risk
of groundwater contamination mostly in central, north-eastern and western part of the sub-catchment. The medium and low
vulnerability classes cover only 18.1% (137.5 km?) and 21.7% (165.1 km?) of the study area, respectively. The shallow
groundwater at the Doornfontein Campus belongs to very high vulnerability area. The sensitivity analysis indicates that depth
to water level, recharge, aquifer media, soil and topography are the important contributors to vulnerability assessment. The
correlation analysis performed to validate the final vulnerability map shows a moderate positive correlation, indicating the
model’s applicability to the urbanised environment. The study indicates an area that is highly vulnerable to pollution, and
hence protective measures are necessary for sustainable management of the groundwater resource in the study area. The
result of this study can also be further improved and verified by using other vulnerability assessment models.
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INTRODUCTION

Groundwater (GW) is a vital resource for domestic con-
sumption, agricultural and industrial activities, and ecosys-
tem services [CHEN et al. 2018; HOWARD 2014]. This re-
source is precious particularly in arid and semi-arid areas
because these areas typically lack sufficient surface water
resources due to either aridity of the climate and/or surface
water pollution. Traditionally, GW has been considered as
more resilient to pollution compared with surface water
sources and it is rarely influenced to a greater extent by
drought and climate change [HowARD 2014]. However,

contaminants from unregulated industries, urbanisation and
agricultural activities are threatening GW availability and
sustainability [DEevic et al. 2014; KADAouI et al. 2019;
MACHIWAL et al. 2018a].

GW contamination is a hidden surface-subsurface pro-
cess since it is not directly invisible from the surface. It can
be noticed only once a spring or a well becomes contami-
nated, or the contaminant is released into surface waters
[JANG et al. 2017]. Thus, it may take several years to notice
and accurately assess GW contamination [JANG et al. 2017].
Once GW is polluted, its cleaning is expensive and time
consuming. Additionally, data constraints, variation in
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geographical locations and physical inaccessibility impede
monitoring of all waters and make remedial actions costly
and often not practical in many areas [BABIKER et al. 2005;
SHRESTHA et al. 2017]. The proverb “prevention is better
than cure” is, therefore, crucial in the proper management of
GW resource [BUTLER et al. 2010] because prevention is
cheaper and easier than any remedial measures.

GW can be protected from pollution by the early identi-
fication of areas more vulnerable to contamination and the
implementation of protective measures. To identify more
susceptible areas, various methods have been developed by
a number of researchers. These broadly include statistical
methods, subjective methods or the overlay-index (GIS-
based qualitative) and the physical process-based methods
(quantitative approaches) [MACHIWAL et al. 2018b;
National Research Council 1993]. The first two ap-
proaches focus on evaluating intrinsic vulnerability, while
process-based models are designed to assess specific vulner-
ability [MACHIWAL et al. 2018b]. Intrinsic vulnerability is
the vulnerability based on natural aquifer properties only,
such as hydrological, geological and hydrogeological char-
acteristics, whereas specific vulnerability is related to a spe-
cific contaminant or a group of contaminants and their rela-
tionship with various features of the intrinsic vulnerability
[HASAN et al. 2019; National Research Council 1993; OKE,
FOURIE 2017].

The application of each method depends on the availa-
bility of sufficient quantitative and qualitative data and their
spatial distribution, purpose and scale of mapping, costs as-
sociated with the formulation of the model and the specific
hydrogeological settings of the aquifer being studied [AYDI
2018; RIBEIRO et al. 2017]. Overlay-index techniques are
extensively used in the groundwater vulnerability assess-
ment and more frequently appear in many scholarly publi-
cations. Of these, the DRASTIC model (depth to water level
(D), net recharge (R), aquifer media (A), soil media (S), to-
pography (T), impact of the vadose zone (1), and the hydrau-
lic conductivity (C)) is one of the most popular methods of
groundwater vulnerability (GWV) mapping and has been
used in several countries, such as in the USA [JANG et al.
2017], Algeria [BOUFEKANE, SAIGHI 2018], DR Congo
[KIHUMBA et al. 2017], Ecuador [RIBEIRO et al. 2017], Pa-
kistan [MUHAMMAD et al. 2015], Malaysia [NESHAT et al.
2014], India [GuPTA 2014], Namibia [HAMUTOKO et al.
2016], and South Africa [LYNCH et al. 1994; 1997]. The
broad application of the DRASTIC model in many areas is
mainly due to the method’s simplicity to use, low applica-
tion cost; requirements of limited input data, less computa-
tional needs because it does not require a complex numerical
analysis or a simulation process that involves many para-
meters, and produces an end product that is easily interpret-
able and incorporated into the decision-making process
[ALLER et al. 1987; JANG et al. 2017].

Previously, some vulnerability assessments were con-
ducted at the national and local levels (site-specific scale) in
South Africa. These include an assessment conducted to de-
velop a groundwater vulnerability map of South Africa by
LYNCH et al. [1994; 1997], SAAYMAN et al. [2007], and
MusekiwA and MaAJoLA [2013], and local studies by
MALHERBE et al. [2018], and SAKALA et al. [2018]. These

studies help to identify the most vulnerable areas and inform
decision-makers to implement groundwater pollution pro-
tection measures. However, the works were done on coarse
spatial scale. The regional groundwater vulnerability assess-
ment may not provide much accurate information at the
catchment level. Furthermore, there is no separate ground-
water vulnerability study conducted explicitly in the current
study area (A21C Quaternary catchment). The objective of
this study is to assess the vulnerability of GW of A21C Qua-
ternary catchment using G1S-based DRASTIC method. The
specific objectives are (i) to determine the vulnerability of
shallow groundwater of Doornfontein Campus (DFC) rela-
tive to A21C sub-catchment; (ii) to determine the sensitivity
of DRASTIC parameters, and (iii) to validate the vulnera-
bility assessment using nitrate.

STUDY AREA

The A21C Quaternary catchment is situated between
25°52°23.69” S and 26°11°54.81” S and, 27°54°14.23” E to
28°12°24.69” E, whereas the shallow groundwater of the
DFC Campus, University of Johannesburg, is located be-
tween 26°11°43.89” S and 28°03°21.15” E under the base-
ments of Perskor Building, Gauteng Province, South Africa
(Fig. 1). Hydrologically, it is located within the upper Croc-
odile River Catchment and regionally within Limpopo River
Basin. The multiyear average precipitation is about 690 mm
per annum, mostly concentrated in summer months. The
summer rainfall significantly contributes to groundwater re-
charge [ABIYE et al. 2011]. The dry rainfall period corre-
sponds to the lowest average temperatures, where July has
the lowest recorded temperature values. The summer rain-
fall period corresponds to warmer temperature with Febru-
ary being the hottest. Higher and lower evaporation occurs
in summer and winter seasons, respectively. The sub-catch-
ment has a total area of about 760.6 km? and mainly charac-
terised by urban setting where built ups occupy about 67%
of the sub-catchment. Grasslands, cultivated areas, and for-
ests occupy 14%, 6.8% and 6.6% of the sub catchment, re-
spectively and the rest are covered by miscellaneous such as
water bodies, shrubs, mines and quarries, etc. The natural
topography of the study area is characterised by a moderate
sloping elevation gradually decreasing from south to north
and drained by the Jukskei River that starts around Doorn-
fontein area in the south and flows to north direction.

Crystalline basement rocks are the dominant geological
formations in the sub-catchment followed by Witwaters-
rand, Ventersdorp super groups respectively. The crystalline
basement rocks are the oldest rock types in the sequence and
consist of greenstone remnants, basement gneissic, granitic
and migmatite rock types that are weathered and fractured
at shallow depth and massive at deeper levels [ABIYE 2011;
MCCARTHY, RUBIDGE 2005]. The Witwatersrand super-
group is further divided into the lower group, West Rand
group, upper group, and the Central Rand group. The Cen-
tral Rand group is represented by the Johannesburg and the
Turffontein subgroups, which consist mostly of quartzites,
conglomerate, and shale. The West Rand group is also char-
acterised by three subgroups: Hospital Hill, Government
and Jeppestown, which are characterised by quartzites,
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conglomerates, and shales [KOSITCIN et al. 2003]. Rocks of
the Klipriversherg group and the Ventersdorp supergroup
can also be found near the CBD and south of the city. These
rocks are overlain by lava, both porphyrite and aphyric
types. They are also overlaid by tuffs, shales, agglomerates
and poorly sorted conglomerates [DE BEER 1986]. The
Doornfontein Campus is mostly underlain by basaltic lava,
agglomerate, and tuff from Klipriversherg subgroup and
quartzites, conglomerates, and shales of the West Rand
group.

In terms of geohydrology, the sub-catchment is predom-
inated by the intergranular and fractured aquifers of genesis
rocks that bear groundwater from 0.5-2 dm®s?. The
groundwater is usually tapped from the shallow weathered

rocks, and fractured zones of lower depth solid. The average
borehole depth in the sub-catchment is about 15.2 m where
water table elevation is decreasing from the upland area in
the south to low lying areas in the north-west. Groundwater
flows from higher elevation areas in the south to north-west.
According to the DWS [2019] national integrated water in-
formation system, the available, recharge, reserve and ab-
stracted amount of groundwater/year is estimated respec-
tively at 1.07-10%, 18.6-10°, 1.95-10% and 2.17-10° m3yL.
Moreover, the sub-catchment has an estimated surplus
amount of groundwater of 14.56:10% m3-y~*, The location of
the study area and geological formations are shown in Fig-
ures 1 and 2.
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MATERIALS AND METHODS
VULNERABILITY ASSESSMENT

The groundwater vulnerability was assessed using the
GIS linked DRASTIC model. DRASTIC is a standardised
model developed in the USA by ALLER et al. [1987] for
evaluating the pollution potential of a specific area using
known hydrogeological properties. It has three essential fea-
tures: hydrogeological parameters, rating system and pa-
rameter weights. The seven hydrogeological parameters are
those that contribute to its name DRASTIC: depth to water
level (D), net recharge (R), aquifer media (A), soil media (S),
topography (T), impact of the vadose zone (1), and the hy-
draulic conductivity (C) [ALLER et al. 1987; RIBEIRO et al.
2017]. Each of these hydrogeological variables were as-
signed a rating of 1 to 10 based on a range of values in which
1 denotes least vulnerable and 10 the most vulnerable areas.
The hydrogeological parameters are further assigned to rel-
ative weights from 1 to 5, where the most significant para-
meters have the weight of 5 while the least significant the
weight of 1 [KIHUMBA et al. 2017]. Ratings and weights of
each parameter are then multiplied and added to provide
vulnerability index values by applying the following linear
equation [ALLER et al. 1987]:

DR; =D,,D, + R,R, + A,A,, + S.S,,+ T,.T,, +
+ I, L. + C,C, (1)

where: DR; = DRASTIC vulnerability index, D, R, A, S, T,
I, and C represents the seven parameters of the model,
w = assigned weight of DRASTIC parameter; r = assigned
rate for the respective DRASTIC parameter.

INPUT DATA PREPARATION AND PROCESSING

Various input data used for the vulnerability assessment
and their sources are shown in Table 1. These data were pro-
cessed in the same workspace in ArcGIS 10.5.1 and pro-
jected properly using projection coordinate of

Table 1. Data type, and source for preparing DRASTIC parameter
layers

Data type Data source Format Olutput
ayer
Borehole water | DWS National Groundwater |CSV. |5 o
level (m) Archive table
Net recharge Water Resources of South Af- | o | o cor
(mm-y™) rica 2012 Study [WR 2012]
Soil Water Resources of South Af- vector | S-raster
rica 2012 Study [WR 2012]
. South Africa Council for Geo-
Geological map science vector | A-raster
Digital elevation | The 30-meter STRM data from | . | 1_octer
model (DEM) USGS
Hydrogeological | DWS 1:500,000 hydrogeologi- vector | I-raster
maps cal map [BARNARD 1999]
. literature [DOMENICO,
Hydraulic €O | ScHwARTZ 1998; YOUNGER | pdf C-raster
ductivity (cm-d™)
2009]
Nitrate measurement and DWS Na- | CSV NO; —
tional Groundwater Archive | table vector

Source: own elaboration.

WGS 1984 UTM_Zone_35S. The data were then reclassi-
fied and ranked to produce individual DRASTIC parameter
layers.

RATING AND WEIGHTING OF DRASTIC
PARAMETERS

The rates and weights assigned for DRASTIC parame-
ters are shown in Tables 2 and 3. Rating and weighting sys-
tems were developed according to guidelines prepared by
ALLER et al. [1987] and for South Africa by LYNCH et al.
[1994]. Rating values range from 1 to 10, where higher
values are given for more significant parameters contrib-
uting to pollution.

Table 2. The rating of DRASTIC parameters in the study area

Parameter Measur_ement Range Rate
unit

0-5 10

Depth to water m 5-15 7

level (D) 15-30 3

>30 1

o 10-50 6

Net recharge (R) mm-y 50100 8

dolomite 10

Aquifer media (A) - lfr:;i;ﬁ]:zgular and 8

fractured 6

sandy loam 6

Soil media (S) - sandy clay loam and 5
loam

0-2 10

Topography (T) % .. .

>18 1

Witwatersrand 6

Impact of vadose Ventersdorp 4

zone (1) a Genesis 3

Transvaal 9

. from 108 to 102 9

Hydraulic con- day !
ductivity (C) m-day e
from 10 to 10 6

Source: own elaboration.

Table 3. Weights of DRASTIC parameters

Parameter Weight Parameter Weight
Depth to water
level (D) 5 Topography (T) 1
Net recharge (R) 4 Impact of vadose zone (1) 5
Aquifer media (A) 3 Hydraulic conductivity (C) 3
Soil media (S) 2

Source: own elaboration.

DEVELOPMENT OF VULNERABILITY INDEX MAPS

Final vulnerability index maps were developed by over-
lapping each of the rated individual thematic maps showing
DRASTIC parameters with their respective weighting val-
ues and summing up their results using Equations (1) and
(2). The multiplication and summation of parameters were
undertaken by using the raster calculator within the Arc GIS
map algebra tool. Vulnerability indices were calculated on
a grid map with a cell size of 20 m x 20 m. Results were
classified into different classes using natural breaks (Jenks)
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classification techniques. The overall theoretical framework
scheme followed to produce vulnerability index maps as in-
dicated in Figure 3.

SENSITIVITY ANALYSIS

In order to identify how the change in an input parame-
ter affects other parameters and overall vulnerability assess-
ment results, sensitivity analyses were performed in many
studies [AKBAR, AKBAR 2013; SAIDI et al. 2011; VU et al.
2019]. The sensitivity analysis plays a vital role in minimis-
ing errors and selecting dominant parameters during a vul-
nerability assessment. The two commonly applied sensi-
tivity analyses in groundwater vulnerability assessment
using the DRASTIC model are the single parameter sen-
sitivity analysis (SPSA) [NAPOLITANO et al. 1996] and
map removal sensitivity analysis (MRSA) [LoDwicCK et
al. 1990].

The single parameter sensitivity. The single parame-
ter sensitivity analysis (SPSA) method examines the effec-
tive weight of DRASTIC parameters with respect to rates
and theoretically assigned weights to the variables [NAPO-
LITANO et al. 1996]. The parameter’s effective weight is cal-
culated by applying Equation (2) [KUMAR, PRAMOD
KRISHNA 2019; NAPOLITANO et al. 1996]:

w =22100 )

where: W = the “effective” weight of each parameter; P, and
Pw = rating and weight of each variable, respectively; V =
the overall vulnerability index.

Map removal sensitivity analysis. The map removal
sensitivity analysis (MRSA) is the study of how the sensi-
tivity of the DRASTIC map changes when one or more pa-
rameters are removed from the vulnerability analysis
[Lobwick et al. 1990; SAIDI et al. 2011]. The MRSA is ex-
ecuted by eliminating a parameter from the model and then
evaluating influence on DRASTIC model results [KUMAR,
PRAMOD KRISHNA 2019]. The purpose of the MRSA analy-
sis is mainly to determine those parameters whose

exemption from the analysis does not significantly influence

the accuracy of results. The MRSA index is calculated by

using Equation (3) [LobwicK et al. 1990]:

vv

N n
v

S = 100 3)

where: S = the sensitivity expressed as variation index,
V and V’ = the vulnerability indices of unperturbed and per-
turbed outputs, respectively, and N and n = the numbers of
data layers used for calculating V and V’, respectively.

When all DRASTIC variables are used during sensitiv-
ity analysis, it is referred to as an unperturbed vulnerability,
whereas if a few parameters are considered, then it is known
as a perturbed vulnerability [KUMAR, PRAMOD KRISHNA
2019].

VALIDATION OF VULNERABILITY MAPS

Validation is an integral part of modelling and helps to
produce reliable and accurate results. In groundwater vul-
nerability assessment, NOs™ is commonly used as a valida-
tion parameter due to its non-lithological/very low presence
in groundwater under natural conditions [HASAN et al.
2019]. The presence of NO3™ in groundwater could reveal
pollutant sources such as from urban waste, agricultural ac-
tivities. Several studies such as SINGH et al. [2015],
Kozrowskl and SoJKA [2019], HAsAN et al. [2019],
KUMAR and PRAMOD KRISHNA [2019] and VU et al. [2019]
have used NO3™ as an effective validation parameter for vul-
nerability assessment model results. In this study, nitrate
concentrations measured and obtained from the national
groundwater archive within the study area were used to val-
idate the final vulnerability map. The NO3~ values map was
created and superimposed on the vulnerability index map.
Index values for the respective NO3~ concentrations in bore-
holes were then extracted using ArcGIS and Extract Values
to Points, and plotted to observe the correlation between the
two.
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RESULTS AND DISCUSSION
CHARACTERISATION OF DRASTIC PARAMETERS

The individual DRASTIC GIS maps were created based
on each set criteria, indicating the relative groundwater vul-
nerability. These are displayed below in the order of
DRASTIC. Each of parameters is also discussed in the sub-
sequent sub-sections.

Depth to water level (D). Higher values of D are lo-
cated in the southern side of the catchment, whereas lower
D values mostly belong to the northern side of the A21C
catchment mimicking the surface topography (Fig. 4). Ac-
cording to the DRASTIC assumption, areas with low D val-
ues are more prone to pollution and rated with higher values,
whereas those with higher D values are less susceptible to
pollution and rated with low values. The D values were as-
signed ratings that range from 1 (the lowest) to 10 (the high-
est) and a weight of 5 based on and LYNCH et al. [1994] as
shown in Table 4.

60'S

6°10'S
[ ]
1

Fig. 4. Rated map of depth to water level (D); source: own study

Table 4. Depth to water level (D)

Depth range (m) Rate Avrea coverage (%)
0-5 10 2.7
5-15 7 56.9
15-30 3 39.2
>30 1 1.2

Source: own study.

Net recharge (R). Ratings and weights of the net re-
charge map are summarised in Figure 5, and Table 5. As
Figure 5 shows, the entire catchment area is characterised
by a recharge rate of below 50 mm-y~*, which is commonly
described as a lower net recharge area. Smaller portions of
the catchment get the recharge of about 51 mm-y . Accord-
ing to DWAF [2006], the mean recharge rates within the
A21C sub-catchment is about 41 mm-y . Recharge is the
main sources for groundwater replenishment of natural and
artificial origins. It is described as the volume of available
water that infiltrates via the unsaturated zone and reaches
the groundwater table [HUANG et al. 2017]. Recharge plays
a critical role in leaching and transporting of contaminants
from the ground surface to the aquifer [ALLER et al. 1987].
The quantity of recharge also affects the dilution and disper-
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Fig. 5. Rated map of net recharge (R); source: own study

Table 5. Net recharge rate (R)

Range of net recharge (mm-y 1) Rate Area coverage (%)
10-50 6 99.73
50-100 8 0.25

Source: own study.

sal of pollutants in the unsaturated and saturated zones. As
recharge to the aquifer is higher, the potential of groundwa-
ter to pollution is also higher (higher vulnerability) because
higher recharge promotes the higher downward movement
of contaminants.

Aquifer media (A). Approximately 80% of the study
area is covered with intergranular and fractured rocks that
bear groundwater from 0.5-2 dm3:s™* and with a minor por-
tion that yield 0.1-0.5 dm®s* (Fig. 6). A rating of 6 and 3
is assigned for these rocks. The southern part of the sub-
catchment, which is mainly based on West rand and Klipri-
viersherg geological formation, has fractured aquifers with
yields ranging from 0.5 to 2 dm3s. A rating of 8 is as-
signed to this formation. A tiny portion in the north end of
the sub-catchment belongs to the Kkarstic aquifer which
yields more than 5 dm3-s%. This formation has been given
arating of 10 because of the presence of the karstic for-
mation which most likely favours contaminant permeability
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Fig. 6. Rated map of aquifer media (A); source: own study
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[OUEDRAOGO et al. 2016]. A weighting of 4 is assigned to
the aquifer media, according to ALLER et al. [1987] and
LYNCH et al. [1994]. The rating of aquifer media is pre-
sented in Table 6. The aquifer media is a parameter that rep-
resents consolidated or unconsolidated geological formation
that has abundant porous materials to yield adequate quan-
tities of water to wells or springs [ALLER et al. 1987; HUANG
et al. 2017]. The aquifer media affects the contaminant
travel time and the natural process occurring during contam-
inant migration such as dispersion, sorption and reactivity
[ALLER et al. 1987]. Aquifers with coarse or larger grain
size formations (sandy, gravel) or highly fractured for-
mations have higher permeability and lower travel time
which leads to greater vulnerability.

Table 6. Rates and coverage of aquifer media

Range ( d\r:1l3e- IS(L) Rate Area z:%erage
Dolomite, karst >5 10 0.14
Fractured 0.5-2.0 6 6.15
Intergranular and fractured 0.5-2.0 8 88.20
Intergranular and fractured 0.1-05 4 291
Intergranular and fractured 2.0-5.0 9 2.60

Source: own study.

Soil (S). Two types of soils are identified in the study
area, namely sandy loam and sandy clay loam and loam
(Fig. 7). Almost all (99%) of the sub-catchment is covered
with sandy loam whereas only a small percentage (1.1%) of
the area is covered with sandy clay loam (Tab. 7). The sandy
loam texture of much of the sub-catchment promotes re-
charge as coarser textured soils have better permeability and
infiltration. According to LYNCH et al. [1994], a rating has
been assigned to soil texture classes. The higher rating 6 is
assigned for sandy loam soils, and lower rating 5 is assigned
for sandy clay loam (Tab. 7), whereas 2 is assigned to
a weightage. The soil has an important impact on both water
flow and contaminant transport because it acts as the most
immediate recipient of rainfall and surface pollutants. The
texture or the size of soil particles influences the rate at
which water and contaminants percolate downward through
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Table 7. Rates and coverage of soil media

Soil range Rate Area coverage (%)
Sandy loam 6 98.9
Sandy clay loam and loam 5 1.1

Source: own study.

the soil profile. Coarse textured soils (e.g. sandy or thin
soils) permit contaminants to travel faster via open spaces
allowing contaminants to reach water table easily whereas
fine-textured soils such as clay and silt material have low
permeability and hence restricts the downward movement
of contaminant and have high attenuation process, resulting
in less potential to contamination.

Topography (T). The rated T map is shown in Figure
8. The slope of the study area ranges from 0-18% and it is
further divided into five classes based on ALLER et al.
[1987] and LYNCH et al. [1994]. A tiny portion of the area
has a very gentle inclination (0-2%). Since such areas are
more prone to contamination, a rating of 10 is assigned to
this class. The majority (35 and 47%) of the sub-catchment
area has the inclination of 2—6% and 6-12%, respectively
(Tab. 8). Both areas can be characterised with a moderately
gentle slope (<12%) and hence there is also a higher possi-
bility of contaminant infiltration. Ratings of 9 and 5 are as-
signed to inclinations of 2-6% and 6-12%, respectively.
The remaining 10 and 2.6 % of the sub—catchment areas
have inclinations of 12-18% and >18% respectively. Rat-
ings of 3 and 1 are assigned for these areas due to their min-
imal possible impact on the vulnerability of groundwater.
A weighting of 1 is assigned to the T based on ALLER et al.
[1987] and LYNCH et al. [1994]. Topography plays a vital
role in water movement and influences the rainfall-runoff
and infiltration process in the area hydrogeological system.
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Table 8. Rates and coverage of topography (T)

Range of coverage of topography (%) | Rate | Area coverage (%)
0-2 10 5.3
2-6 9 35.3
6-12 5 47.0
12-18 3 9.9
>18 1 2.6

Source: own study.
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The steeper topography is in an area, the greater the possi-
bility of creating high surface runoff resulting in lower in-
filtration whereas, gentle slope topography area may have
lower surface runoff and have the higher water holding ca-
pacity, i.e. greater the chance of high infiltration, favouring
the groundwater to contamination.

Impact of the vadose zone (). The rated I-map and its
respective spatial coverage are presented in Figure 9 and Ta-
ble 9, respectively. About 88.3, 7.17 and 4.23% of the study
area is characterised by granite-genesis Witwatersrand, and
Ventersdorp formations (Tab. 9). The I is known as the un-
saturated section of the subsurface zone that contains pores
filled by either air or water where physical and chemical
processes take place, such as chemical reactions, dispersion,
biodegradation, and volatilisation. The I is an essential var-
iable in groundwater vulnerability assessment because it
plays a vital buffering role between the aquifer and ground
surface during water and contaminant infiltration [JAHAN et
al. 2018]. The I formation is particularly important as it af-
fects the contaminant percolation rate below the soil layer
and above the groundwater table. Coarser grain size for-
mation or intense fractured media have higher groundwater
vulnerability because these types of formations permit con-
taminants to travel easily, whereas fine grain size formations
or less fractured media have low groundwater vulnerability
because of restrictions to water and contaminant flow. Ac-
cording to LYNCH et al. [1994], the dolomite formation was
assigned the highest rating (10), whereas the lowest rating
(3) were assigned to the granite-genesis formation. For
quartzite, shale, and conglomerate of Witwatersrand, and
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Fig. 9. Rated map of the impact of the vadose zone (1);
source: own study

Table 9. Rates and coverage of the impact of the vadose zone (1)

Range of the impact . Area coverage
of the vadose zone Lithology Rate (%)
- quartzite, shale,
Witwatersrand conglomerate 6 7.17
tholeiitic basalt
Ventersdorp andesite, tuff 4 4.23
Genesis granite-gneiss, 3 88.30
granite, gneiss )
Transvaal dolomite 9 0.27

Source: own study.

andesite and tuff of the Ventersdrop formation, ratings of
6 and 4 were assigned. A weight of 4 is assigned to the
I according to ALLER et al. [1987] and LYNCH et al. [1994].

Hydraulic conductivity (C). C is defined as the capa-
bility of an aquifer formation to transmit water via pore
spaces or fractures when subjected to the hydraulic gradient
[KHOsRAVI et al. 2018]. It determines the rate of contami-
nant travel, residence time and attenuation potential. How-
ever, it depends on properties of water (especially its kine-
matic viscosity and density) and aquifer (rock material)
[SINGHAL, GUPTA 2010; YOUNGER 2009]. Well sorted and
coarse-grained materials will have a higher hydraulic con-
ductivity than fined grained materials, such as silt and clay.
Compaction and intrusion of impermeable layers (cementa-
tion) due to various construction activities can significantly
reduce the C. This could be demonstrated more in urban ar-
eas due to the anthropogenic activity (for example, deep ex-
cavations for constructions of multi-storey buildings, sub-
surface pipes, etc.). In hard fractured rocks, such as genesis,
granites etc., the hydraulic conductivity depends on size,
density and interconnection of fractures [SINGHAL, GUPTA
2010]. On the one hand, rocks with higher conductivity per-
mit water and contaminants to move and spread quickly into
groundwater, resulting in increased groundwater vulnerabil-
ity (GWV). On the other hand, rocks with low C values re-
strict water and contaminant movement, eventually making
groundwater less vulnerable to pollution.

The measured values for the C were not available in the
study area. Hence, the approximate hydraulic conductivity
values for various rocks were extracted from hydrogeologi-
cal literature, such as DOMENICO and SCHWARTZ [1998] and
YOUNGER [2009]. These values were further divided into
seven classes (Fig. 10, Tab. 10). The values have been rated,
and the higher rating is given to higher conductivity, while
lower ratings to lower conductivity. The C of the dolomitic
aquifer is assigned to the highest rating (10), since such ag-
uifers have high permeability due to their karstic formations
[OUEDRAOGO et al. 2016]. These aquifers cover a tiny por-
tion of the area and they are located in the north end of the
sub-catchment. The Witwatersrand lithological formation
was given a rating of 6, whereas the Vetersdrop formation
was rated 4. The lowest rating (3) was assigned to granite-
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Table 10. Rates and coverage of hydraulic conductivity

Lithology description (rizr;gi) Rate ,?oze)a
Dolomite 10°%-10? 9 0.02
Lava (mainly andesite and quartzite, 104102 5 273
porphyry), shale and quartzite
A_mphlbollte, serpentlnlt_e, talc, schist, 105.104 2 401
diorite, gabbro, pyroxenite
Dunite 10°-10° 1 3.98
Genesis, magmatic and granite 10°-10° 3 80.33
Quartzites, shales and conglomerates | 10°-1072 4 7.42
Tholeiitic basalt (andesite, tuff) 104-10? 6 1.49

Source: own study.

genes, which cover most of the Quaternary catchment area.
The weighting of 3 was assigned to the C, according to
ALLER et al. [1987] and LYNCH et al. [1994] recommenda-
tions.

GROUNDWATER VULNERABILITY
RASTIC INDEX

DRASTIC index values were divided into four classes
using natural breaks (Jenks) classification techniques and
the results are shown in Figure 11 and Table 11. The GWV
index ranged from 80 to 162, where higher values indicate
the potentials of hydrogeological and landscape parameters
to readily move contaminants to groundwater, while a low
value shows that resource has better protection from pollu-
tants. The results reveal that about 6.6% (48.93 km?) of the
area, mostly in the southern side of the sub-catchment, has
very high vulnerability. About 53.6% (408 km?) of the
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Fig. 11. Vulnerability index map using DRASTIC model;
source: own study

Table 11. Results of vulnerability classes

Index range Vulnerability DRASTIC model coverage
class area (km?) area (%)
80-106 low 165.13 21.7
106-117 medium 137.52 18.1
117-132 high 408.00 53.6
132-163 very high 49.93 6.6
Total 760.58 100

Source: own study.

catchments area also exhibited high risk of groundwater
contamination. It is located mostly in central, north-eastern
and western parts of the sub-catchment. Medium and low
vulnerability classes cover only 18.1% (137.5 km?) and
21.7% (165.1 km?) of the study area, respectively. Accord-
ing to Figure 11, the shallow groundwater of the DFC cam-
pus can be classified as highly vulnerable.

The southern part, where the DFC campus is located,
central, north-eastern and western parts of the area are
mostly fall into the category of very high vulnerability. The
possible reason for this could be high urbanisation in the
southern side and agricultural area in the north part of the
catchment. The study area is drained by the Jukskei River
which starts from the southern border of the area (around the
Doorfountien campus) and with its tributaries drains to the
north. The Jukskei River catchment is one of catchments
having a serious contamination problem [HUIZENGA,
HARMSE 2005]. Water quality problems are mainly caused
by geological and anthropogenic factors, such as increased
communal effluent discharge due to high urbanisation and
industrial activities [HUIZENGA, HARMSE 2005]. Uncon-
trolled release of effluents in the urban area usually elevates
the NOs concentration and increases groundwater vulnera-
bility.

THE SENSITIVITY OF DRASTIC MODEL
PARAMETERS

The statistical summary of hydrogeological factors ap-
plied to develop the DRASTIC model are shown in Table
12. The R and A parameters show higher mean values of 7.0
and 7.4, respectively, whereas the C parameters have the
lowest mean rate (4.28). All other parameters’ mean rates
range from 5.25 to 5.88. The highest coefficient of variation
(CV = 66.47) is observed regarding the D parameter fol-
lowed by T (CV =61.42) and C (CV = 58.17) parameters,
whereas the lowest variation (CV = 9.09) is observed for the
S parameter. Other parameters exhibited moderate varia-
tions. Higher CV values of DRASTIC parameters suggest
a significant contribution of such parameters to the variation
in GV, whereas parameters with lower CV values indicate
less contribution to the variation of GV [BABIKER et al.
2005; VU et al. 2019].

Single parameter sensitivity analysis. The results of
single parameter sensitivity analysis computed by Equation
(2) for DRASTIC are shown in Table 13. According to the

Table 12. Statistical summary of DRASTIC parameters

Parameter Mini- | Maxi- Mean Standgrd Cc_)ef_‘ficient of
mum mum deviation | variation (CV%)
D 1 10 5.25 3.49 66.47
R 6 8 7.00 1.00 14.28
A 4 10 7.40 2.15 29.05
S 5 6 5.50 0.50 9.09
T 1 10 5.60 3.44 61.42
| 3 9 5.50 2.29 41.63
C 1 9 4.28 2.49 58.17

Explanations: D = depth to water level, R = net recharge, A = aquifer media,
S = soil media, T = topography, | = impact of the vadose zone, and C = the
hydraulic conductivity.

Source: own study.
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table, the effective weight of some parameters is higher,
whereas others show deviation from their respective theo-
retical weights assigned. The depth to water level (D) has
higher effective weight (22.4%) which exceeds its theoreti-
cal weight. It indicated that D is the most significant param-
eter for vulnerability assessment. The net recharge, aquifer
media, soil and topography also show higher effective
weights (20.49, 19.93, 10.21 and 5.3%) and higher effective
weights (20.49, 19.93, 10.21 and 5.3%) compared to their
theoretical weights (17.39, 13.04, 8.69 and 4.34%), respec-
tively. However, the impact of vadose zone and hydraulic
conductivity has lower effective weights (13.87 and 7.75%)
than theoretically assigned weights (21.73 and 13.04%), re-
spectively.

Table 13. Statistical summary of single parameter sensitivity ana-
lysis

Theoreti- | Theoreti- Effective weight (%)
Parameter cal cal weight | mini- | maxi-

weight (%) mum mum mean sD
D 5 21.73 5.05 | 40.98 | 22.40 7.36
R 4 17.39 14.81 | 29.27 | 20.49 2.05
A 3 13.04 9.30 | 28.57 | 19.93 3.00
S 2 8.69 6.41 | 14.63 | 10.21 1.04
T 1 4.34 0.68 | 10.75 5.30 2.02
| 5 21.73 10.42 | 33.33 | 13.87 3.25
C 3 13.04 244 | 16.67 7.75 1.74

Explanations as in Tab. 12.
Source: own study.

Map removal sensitivity analysis. The analysis of map
removal sensitivity is indicated in Table 14. Results show
variability when a single parameter is removed from the vul-
nerability index at a time. The T parameter has a relatively
high mean map removal sensitivity variation index (1.49%)
— Table 14, despite its low theoretical and effective weights
(Tab. 13). The vulnerability index has also shown sensitivity
when the D parameter is removed from the vulnerability
analysis (mean variation index of 1.44%). The vulnerability
index is much less sensitive to the | factor and moderately
sensitive to A, R, Sand C.

Table 14. Statistical summary of map removal sensitivity analysis

Parameter Variation index (%)

removed minimum maximum mean SD
D 0 4.45 1.44 1.12
R 0.08 2.49 1.03 0.34
A 0.02 2.38 0.98 0.40
S 0 1.31 0.68 0.17
T 0.59 2.26 1.49 0.33
| 0 3.17 0.36 0.04
C 0 1.97 1.08 0.28

Explanations as in Tab. 12.
Source: own study.

VALIDATION OF VULNERABILITY INDEX MAPS

The NOs™ values superimposed on the vulnerability in-
dex map is shown in Figure 12. In the map, maximum NO3~
values coincide with areas characterised by high and very
high groundwater vulnerability zones. The scatter plot of
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Fig. 12. Spatial distribution of nitrate on the DRASTIC
vulnerability index map; source: own study

nitrate concentrations versus DRASTIC index values are
also shown in Figure 13. The line of the best fit in plots
shows a moderate positive correlation (R? = 0.5) between
the DRASTIC and nitrate concertation demonstrating the
agreement between the computed vulnerability and risks of
pollution (Fig. 13). The validation shows the applicability
of the model to the urbanised environment.
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Fig. 13. Plot of nitrate concentration versus DRASTIC index
CONCLUSIONS

This study assessed vulnerability of groundwater to
contamination in urbanised and hard rock environments by
using the DRASTIC model. Seven natural hydrogeological
parameters were considered for the model. The results re-
veal that about 6.6% (48.93 km?) of the area, mostly in the
southern side of the sub-catchment, has very high vulnera-
bility. About 53.6% (408 km?) of the catchment area also
exhibited high risk of groundwater contamination and it is
located mostly in central, north-eastern and western parts of
the sub-catchment. The medium and low vulnerability cover
only 18.1% (137.5 km?) and 21.7% (165.1 km?) of the study
area, respectively. The shallow groundwater at the DFC
campus is a part of a very high vulnerability area. Sensitivity
analyses performed to determine the effect of parameters on
the vulnerability index indicate that D, R, A, Sand T are im-
portant contributors to the vulnerability assessment using
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the DRASTIC model. The analysis of nitrate and DRASTIC
models show a positive moderate correlation. It indicates
that the resources are less protected against surface contam-
ination. Thus, protective measures should be put in place to
protect the groundwater reserve from surface pollutants
originating from natural and anthropogenic activities. The
result of this study helps to provide qualitative information
for groundwater monitoring and can further be improved
and verified by using other vulnerability assessment models.
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