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Abstract: This study evaluates and compares four algorithms: maximum likelihood classification (MLC), minimum 
distance classifier (MDC), parallelepiped classifier (PPC), and k-means clustering, on their performance in detecting 
change of vegetation cover from multi-temporal Landsat images in Raub District, Malaysia in 2000–2020. The accuracy 
assessment is based on 150 stratified random points using overall accuracy (OA), user’s accuracy (UA), producer’s 
accuracy (PA), and kappa coefficient (KC). MLC resulted as the most accurate for all the years with OA ranging from 
86.8 to 92.7% and kappa values between 0.79 and 0.86; besides it was found to be better for distinguishing some 
spectrally similar land covers such as oil palm (UA = 90%; PA = 90–100%) and rubber plantation (UA = 70–90%; 
PA = 100%). The k-means result has moderate accuracy with KC values ranging from 72.0 to 85.3% but this method 
mostly confused open grassy area with sparse forest area. MDC and PPC did not perform well; OA got as low as 47.6%. 
Moreover, high omission error was found in PPC when certain classes were absolutely omitted in a particular year. 
Dense forest decline was more than 27% (115,000–118,200 ha in 2000 to 83,500–86,100 ha by 2020), accompanied by 
about an 88% increase in areas under oil palm plantations. Open grassy areas doubled. The overall classification 
performances ranged best to poorest as: MLC > k-mean > MDC > PPC. These findings validate that MLC is the most 
dependable method for instituting policy-relevant monitoring over highly heterogeneous tropical landscapes while 
k-means delivers a rapid prelude and MDC/PPC are options with limited data or computational constraints.  

Keywords: accuracy assessment, k-mean, maximum likelihood classification (MLC), minimum distance classifier 
(MDC), parallelepiped classifier (PPC), tropical deforestation 

INTRODUCTION 

Malaysia’s land cover dynamics are undergoing profound transfor-
mations. Agricultural expansion largely comprises oil palm and 
rubber plantations, coupled with urbanisation and infrastructural 
development taking place in the country. Such changes have great 
implications on biodiversity loss, climate regulation, and hydro-
logical stability of highly biodiverse areas like regions as Pahang. 
Remote sensing studies show a huge forest cover drop in Malaysia 
over the last two decades where more dense forests are continuously 
replaced by monoculture plantations and degraded open areas 
(Othman et al., 2019). Monoculture plantations further enhance hab-
itat fragmentation while reducing carbon sequestration capacity 

besides increasing erosion and sedimentation in the river basins 
(Shrestha, 2011). Even after several policy commitments effective 
monitoring of these types of landcover changes is still missing due to 
accessibility to data, classification accuracy, and integration of 
temporal change analysis into decision-making processes. To bridge 
these gaps demands classification robustness in perceiving subtle 
spectral differences within the heterogeneous tropical landscapes, 
where classes of vegetation most often demonstrate high intra-class 
variability and then overlap between spectrums. 

It is within this context that the choice of appropriate 
remote sensing classification techniques in such a way as to 
enhance reliable land cover mapping and change detection proves 

JOURNAL OF WATER AND LAND DEVELOPMENT  
e-ISSN 2083-4535   

Polish Academy of Sciences (PAN)  Institute of Technology and Life Sciences – National Research Institute (ITP – PIB) 

JOURNAL OF WATER AND LAND DEVELOPMENT 
DOI: 10.24425/jwld.2026.156062 

2026, No. 68 (I–III): 39–50 

© 2026. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

mailto:kalkotapaul1968@gmail.com
https://orcid.org/0009-0008-5436-5183
mailto:angkeanhua888@um.edu.my
https://www.scopus.com/authid/detail.uri?authorId=57192254426


very critical. Among these, maximum likelihood classification 
(MLC), minimum distance classifier (MDC), parallelepiped 
classifier (PPC), and k-means clustering provide methodological 
strengths and weaknesses from some perspectives when applied 
in Malaysia’s actual rather complex tropical environments. MLC 
builds on a more comprehensive variance–covariance-based 
description of class spectral distributions, thus enabling dis-
crimination among spectrally similar classes, for example, oil 
palm and rubber plantations, often found in Malaysian land-
scapes (Hu and Tan, 2025). MDC does not include variance– 
covariance because this method is less time-consuming; hence, 
situations always found around heterogeneous areas with large 
spectral overlaps prove less dependable (Sharma Banjade, Rai and 
Subedi, 2023). PPC is reliable where well-defined class boundaries 
exist but return high omission errors wherein the variability 
within classes. Method k-means being an unsupervised algorithm 
performs well where data is not available or for a preliminary 
assessment, but since the method is based only on spectral 
similarity, it mostly misclassifies sparse forest with open grassy 
areas. Such methodological nuances are critical in deciding what 
classification strategy would be appropriate to meet accuracy and 
efficiency requirements as well as the availability of data in 
tropical vegetation monitoring. 

This study carries out an extensive comparative assessment 
between MLC, MDC, PPC, and k-means classification algorithms 
in terms of their ability to detect vegetation cover changes over 
the Raub District of Pahang State, Malaysia for a series as long as 
twenty years, specifically from 2000 to 2020, taking into account 
these environmental and methodological premises. A specific 
objective includes quantification of temporal change among the 
five major classes of vegetation: dense forest, sparse forest, oil 
palm plantation, rubber plantation, and open grassy area, from 
multi-temporal Landsat imagery and an assessment plus compar-
ison in terms of standard measures on the accuracy of supervised 
against unsupervised results (kappa), followed by a critical 
discussion on how larger methodical weaknesses hinder applica-
tion potential in the typically heterogenous tropical landscape 
patterns found across Malaysia. Hence, this research shall be 
developed with integration between accuracy appraisal and 
change detection analysis that improves methodological choices 
for empirically validated land cover monitoring towards sustain-
able land management in biodiversity-sensitive region policies. 

Land use/land cover (LULC) change represents one of the 
most important global environmental issues with changes 
initiated by agricultural development, deforestation, infrastruc-
ture development, and urbanisation. In recent decades, large-scale 
conversions from natural vegetation to monoculture plantations, 
croplands, and built-up areas have significantly altered ecosystem 
structure and function across tropical, temperate, and boreal 
zones (Othman et al., 2019; Tiko et al., 2025). These changes have 
profound impacts on biodiversity, carbon storage, and hydro-
logical regulation, which in turn cascade into broader socio- 
economic consequences. Monitoring such dynamics at policy- 
relevant spatial and temporal scales requires robust, accurate, and 
repeatable analytical techniques. Remote sensing provides this 
potential since multi-temporal satellite data can regularly observe 
LULC transitions and make them available for analysis (Chen 
et al., 2025). The reliability of these assessments depends largely 
on the classification method applied and the rigor of the 
classification performance evaluation. 

Supervised classification is the basic approach in remote 
sensing whereby the analyst selects representative training 
samples for each class of land cover. The classifier then uses 
these labelled data to model the spectral characteristics of each 
class throughout the entire image (Richards and Jia, 2006). The 
method utilises a priori knowledge about study areas and allows 
statistical decision rules that maximise the separability between 
classes, hence reducing misclassification rates (Chowdhury, 
2024). In modern applications, supervised methods always find 
huge relevance even with increasing popularity for object-based 
and machine learning approaches due to interpretability issues, 
less computational intensity, and multi-temporal datasets’ 
compatibility (Chen et al., 2025). Maximum likelihood classifica-
tion (MLC) has been very popular and statistically valid in 
heterogeneous landscapes. It assumes that the spectral distribu-
tion of classes falls under a multivariate normal distribution and 
calculates for every pixel its probability to belong to any particular 
class, assigning it finally to the class with the highest posterior 
probability (Foody, 2002; Hu and Tan, 2025). This hence allows 
MLC to take into consideration not only the mean vector but also 
variance-covariance structure information within training data 
where spectral signatures from different classes seem to be 
overlapping. In agricultural-forest mosaics or some types of 
mixed vegetation, this is rather common. Recent studies prove 
that MLC is still better than simpler supervised methods 
regarding total accuracy and Kappa coefficients when intra-class 
variability is high (Varga et al., 2022; Chen et al., 2025). 

The minimum distance (MDC) algorithm computes the 
distance between the mean spectral value of each class and that of 
the pixel. It does not consider variance or covariance information, 
thus essentially assuming spherical class boundaries. Therefore, it 
runs faster but introduces more errors whenever classes are 
elliptically or anisotropically distributed in the spectral space 
(Varga et al., 2022). The decision boundary of a parallelepiped 
classifier is aligned with axes and is determined by minimum to 
maximum values (standard deviations) for each band. It can be 
calculated very quickly but has two very important weaknesses: 
(1) any pixel that falls outside all parallelepipeds will be 
unclassified, thus reducing completeness, and (2) if a pixel falls 
inside more than one parallelepiped, this becomes an assignment 
problem where there is ambiguity (NV5 Geospatial Software, 
2024). This becomes a real problem in intricate landscapes as 
spectral overlaps among classes become frequent. In view of these 
methodological considerations, MLC can be said to have ensured 
the best possible statistical rigor, accuracy, and robustness in 
multi-temporal land cover analyses. The method incorporates 
class variance–covariance thereby ensuring more reliable dis-
crimination among spectrally similar classes leading to reduced 
omission as well as commission errors and outputting classifica-
tion results that are even much more suitable for change detection 
as well as environmental monitoring that has direct relevance to 
policies being formulated (Chen et al., 2025; Hu and Tan, 2025). 

Unsupervised classification in remote sensing is defined as 
the method of clustering image pixels by their spectral similarities 
with no prior information or ground truths for training data 
(Lillesand, Kiefer and Chipman, 2015). In most cases, this will be 
followed up by labelling where the analyst determines what each 
cluster represents and assigns that cluster to a land cover class 
using extra information such as high-resolution imagery or 
observations from the field. The labelling is normally done after 
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running the k-means algorithm which happened to be the most 
popular among them all. Basically, it partitions the dataset into 
k clusters by an internal iterative process minimising within- 
cluster variance (Han and Lee, 2023). The major strength of 
unsupervised classification is that it does not depend on reference 
data, thus quite handy in data-poor situations, for preliminary 
mapping exercises, or to explore some analytical work where 
pattern detection is the objective without any pre-established class 
definitions (Hu and Tan, 2025). Method k-means is easily 
computed and feasible for large datasets, which makes it 
applicable to perform rapid assessments over a wide area when 
that area happens to be remote or poorly accessible. Some recent 
innovations have made their way into the method by paralleling it 
and improving initialisation to move toward tackling sensitivity 
regarding initial cluster centers as well as issues related to local 
minima (Han and Lee, 2023). 

The unsupervised classification bears intrinsic weakness. 
Since no a priori knowledge is used in its development, thus 
unable to model class-specific spectral variance or covariance, 
there would be much more misclassification in heterogeneous 
landscapes with overlap among spectral signatures (Hu and Tan, 
2025). The output of this algorithm can also vary from run to run 
due to the phenomenon known as “label switching” because the 
same cluster index from different images might refer to different 
land cover types. This complicates multi-temporal analysis when 
change detection is concerned. In addition, spectrally similar 
vegetation types aggregate into one cluster most of the time 
reducing thematic detail and accuracy. Method k-means can be 
very useful in the absence of ancillary data or as another approach 
within hybrid methods that also implement supervised classifica-
tions. Where thematic accuracy is a concern, especially in policy- 
oriented land cover monitoring and change detection, unsuper-
vised results are best used only as a baseline or background 
mapping to be improved on later by more specific, supervised 
mappings (Chen et al., 2025; Hu and Tan, 2025). 

MATERIALS AND METHODOLOGY 

STUDY AREA 

The study area is located in Raub District, on the western side of 
Pahang State, Peninsular Malaysia (Fig. 1). Raub extends over 
predominantly rural and forest land; its neighbouring districts are 
Bentong to the south and Lipis to the north, with Kuala Lipis and 
Jerantut on its eastern front. The district is situated between 
approximately 3°40'N to 3°55'N and 101°35'E to 101°55'E, 
covering about 2,271 km2. Rich in biodiversity within thick 
tropical rainforests, fertile land suitable for agriculture develop-
ment defines it as an ecological draw card for Raub itself. 
Traditionally known as a gold mining area together with rubber 
estates within the district boundaries, recent decades have 
increasingly shifted land use towards oil palm plantations besides 
mixed agriculture activities. This observed change has effects on 
land cover patterns that include forest fragmentation and 
plantation agriculture expanding plus newly found open grassy 
patches. The study area gets a wet tropical climate with lots of rain 
and small changes in seasons helping plants grow all year. Yet, the 
current land making works in Raub have brought about spatial 
and ecological difference, setting it up as a great spot for looking at 

land use change and comparing different ways of classifying things 
seen from far away. The study place was marked out using 
shapefiles of admin limits and shown in UTM Zone 47 North 
(WGS 84) for keeping space the same all through the check. 

SATELLITE DATA ACQUISITION, IMAGE PREPROCESSING  
AND VEGETATION CLASSIFICATION SCHEME 

To capture vegetation patterns and changes over time, Landsat 
satellite images were used for the years 2000, 2010, and 2020. 
They were downloaded from Earth Explorer (Tab. 1). The 
imagery for both the year 2000 and 2010 come from the Landsat 
5 Thematic Mapper (TM) sensor while data for the year 2020 is 
available in Landsat 8 Operational Land Imager (OLI). All images 
selected have less than a ten percent cloud cover as well as being 
acquired during a dry season to minimise atmospheric inter-
ference and maximise spectral separability. 

Fig. 1. The study area of Raub Districts, Pahang; source: own elaboration 

Table 1. Landsat satellite imagery used for vegetation analysis in 
Raub District (2000–2020) 

Date Sensor Bands used Spatial 
resolution (m) 

Cloud cover 
(%) 

24 Aug 2000 Landsat 
5 TM Bands 1–5, 7 30 <10 

01 Jun 2010 Landsat 
5 TM Bands 1–5, 7 30 <10 

09 Apr 2020 Landsat 
8 OLI Bands 1–7 30 <10  

Source: https://www.usgs.gov/landsat-missions/landsat-satellite-missions. 
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Preprocessing of all the images was done in ENVI, QGIS, 
and Python so as to make them consistent and comparable. The 
dark object subtraction (DOS) method has been used here 
for haze reduction towards getting good surface reflectance 
values. These have then been geometrically corrected and 
reprojected into the UTM Zone 47N coordinate system. 
Subsetting took place with the help of a boundary shapefile 
that had already been defined for the study area. After that 
spectral bands were stacked to form composite layers ready for 
classification. The classification scheme was intended to reflect 
the major vegetation types identified within the study area 
(Tab. 2). It has been applied equally in all methods of 
classification and years used to undertake a comparison. 

SUPERVISED AND UNSUPERVISED  
CLASSIFICATION TECHNIQUES APPROACH 

In remote sensing, classification techniques can be broadly 
categorised as supervised and unsupervised. The two categories 
differ in their data requirements, operational principles, and 
resultant accuracies. In this study, the two categories were 
implemented through k-means clustering, maximum likelihood 
classification (MLC), minimum distance classifier (MDC), and 
parallelepiped classifier (PPC). Method k-means, being an 
unsupervised algorithm, was run on annual composite images 
with five initial cluster centers where pixels were grouped only 
by spectral similarity without using any training data. Clusters 
were then relabelled to pre-defined vegetation classes manually 
with the help of Google Earth imagery and Landsat composites. 
The other three methods: MLC, MDC, and PPC; are supervised 
and needed 70–100 manually digitised samples per class from 
high-resolution imagery and verified vegetation patches for 
training. MLC assigns a pixel to the class that has the highest 
posterior probability assuming a multivariate normal distribution 
of spectral signatures; MDC classifies a pixel by the shortest 
Euclidean distance to class means; PPC assigns all pixels whose 
spectral values fall within minimum-maximum thresholds for 
each class. Hence, probability-based, distance-based, range-based, 
and unsupervised methods could strictly rigorously comparatively 
evaluate which one would accurately detect vegetation change in 
such heterogeneous landscapes found in the tropics. 

The MLC method is generally more statistically based 
among the above three methods and works in a probability 

domain assuming for each class a multivariate normal distribu-
tion. It assigns a pixel vector, x, to that class, i, for which the 
following discriminant function (gi)X is maximum (Eq. 1): 

gi Xð Þ ¼ �
1

2
In �ij j �

1

2
X � mið Þ

T
X� 1

i
X � mið Þ þ In P wið Þ ð1Þ

where: mi = vector, Σi = covariance matric, |Σi| = determinant, 
P(wi) = prior probability of class i, X = vector of input features 
(Li et al., 2012). 

Through the use of both variance and covariance, MLC is 
highly responsive to high spectral overlap, therefore making it 
capable of separating spectrally similar classes like oil palm and 
rubber plantations that occur within heterogeneous tropical 
landscapes (Shiraishi et al., 2014). MDC is also a simple supervised 
technique by which pixels are allocated to that class whose mean 
spectral vector has the minimum Euclidean distance (Eq. 2). 

di Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

b¼1

xb � mibð Þ
2

s

ð2Þ

where: xb = pixel value in band b, mib = class mean for band b, 
n = number of spectral bands. 

MDC is computationally efficient and accurate where class 
means are well separated but becomes less dependable under 
conditions of high spectral similarity since it does not take into 
account the variance and covariance of classes (Sharma Banjade, 
Rai and Subedi, 2023). PPC defines rectangular decision 
boundaries in spectral space using the minimum and maximum 
training values for each band in each class. A pixel x belongs to 
class i if (Eq. 3): 

minib � xb � maxib ð3Þ

where: minib and maxib are spectral limits for band b in class i. 
PPC is quick and best for clearly defined classes with low 

internal differences but does not work well in complex plant 
patterns where there is high variation within the same group. 
Unlike supervised learning, the k-means clustering method falls 
under unsupervised classification. It does not need any training 
data. Method k-means simply breaks pixels into k groups based 
only on colour likeness, step by step reducing inside group 
difference (Eq. 4). 

J ¼
Xk

i¼1

X

x2Ci

k X � �ik
2 ð4Þ

where: Ci = set of pixels in cluster i, µi = cluster centroid, 
∥ ∥ = Euclidean distance. 

While k-means is rapid and valuable for exploratory 
mapping in data-poor contexts, it is prone to misclassification 
in heterogeneous landscapes, such as confusing sparse forest with 
open grassy areas, because it relies solely on spectral distance 
without spatial or contextual cues (Sari et al., 2023). 

ACCURACY ASSESSMENT 

For both supervised and unsupervised methods, the same set of 
150 stratified random sample points was used for each year to 
ensure direct comparability of results. These points were evenly 
distributed across the five land cover classes, with 30 points 
allocated per class, irrespective of class area, in accordance with 

Table 2. Classification categories and descriptions of dominant 
vegetation types in Raub District 

Category Description 

Dense forest highly compact and closed-canopy forest areas 
with rich biomass 

Sparse forest forested areas with lower canopy density or more 
fragmented tree cover 

Oil palm plantation commercial plantations cultivated for oil palm 
production 

Rubber plantation areas planted with rubber trees, typically in linear 
patterns 

Open grassy area open fields dominated by grasses or herbaceous 
vegetation  

Source: own elaboration. 
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standard accuracy assessment procedures. The metrics are 
important in evaluating classification performance and have 
found application as standard metrics within remote sensing 
applications for this purpose (Shiraishi et al., 2014; Sari et al., 
2023). Classification performance was evaluated using a confusion 
matrix (error matrix) for each classifier and year of cross- 
tabulating reference labels against classified labels. Four standard 
performance metrics were computed from this matrix: overall 
accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), 
and kappa coefficient (KC). The OA measures the proportion of 
correctly classified samples relative to the total number of 
reference points (Eq. 5): 

OA ¼

Pk
i¼1 nii

N
� 100 ð5Þ

where: k = number of class, nii = numbers of correctly classified 
samples for class i, N = total number of samples (150 in this 
study). 

In the error matrix used, nij denotes the number of samples 
classified as class i (classifier output) while their reference or 
ground truth class is j. The UA for the class i expresses the 
probability that a pixel assigned to class i truly belongs to the class 
in the reference data, indicating commission error (Eq. 6). 
Conversely, PA for class i measures the probability that a reference 
pixel of class i was correctly classified, representing omission 
error (Eq. 7). Lastly, KC quantifies the agreement between the 
classification and the reference data while adjusting for agreement 
that could occur by chance (Eq. 8); where the expected agreement 
Pe is computed as in Equation (9). 

UAi ¼
nii

Pk
j¼1 nij

� 100 ð6Þ

PAi ¼
nii

Pk
j¼1 nji

� 100 ð7Þ

KC ¼
OA � Pe

1 � Pe
ð8Þ

Pe ¼

Pk
i¼1

Pk
j¼1 nij �

Pk
j¼1 nji

� �

N2
ð9Þ

Generally, these metrics give a broad view of classification 
performance: OA is an overall measure of accuracy, UA gives the 
map reliability from the user’s side, PA expresses completeness 
from the producer’s point of view, and KC is a statistically 
adjusted measure of total agreement. Therefore, a stringent 
comparison of MLC, MDC, PPC, and k-means classification 
methods that will translate into which method brings out most 
reliably the vegetation change in diverse tropical landscapes 
within Raub District can be performed. 

VEGETATION CHANGE DETECTION 

Maps of 2000, 2010, and 2020 were compared pixel-by-pixel to 
detect change in an after-classification comparison using 
Equation (10) so as to be able to trace the dynamism of 

vegetation composition. For instance, it could easily be identified 
whether the land use was dense forest or had transformed into oil 
palm plantation; or from rubber plantation to open grassy area. 

�Cp ¼ Cp;t1 � Cp;t2 ð10Þ

where: Cp,t1 = class label of pixel p at time t1, Cp,t2 = class label of 
pixel p at time t2, ΔCp = change code (0 = no change, ≠0 = change 
type). 

Meanwhile, matrices for change (as in Eq. (11) and Eq. (12)) 
were developed that summarised the area of transitions, and zonal 
statistics facilitated the provision of information on changes in 
hectares for every vegetation class. 

Aij ¼Mij � pixel area ð11Þ

Pij ¼
Mij

Pk
i¼1

Pk
ij Mij

� 100 ð12Þ

where: Mij (for i ≠ j) = changed pixels from class i to j. 
All spatial analyses and area calculations were conducted 

using QGIS. 

SOFTWARE AND TOOLS 

Geospatial tools were many within the workflow for this analysis. 
Image correction and classification were performed in ENVI. 
Spatial analyses and visualisations took place in QGIS. Statistical 
computation and classification performance evaluation occurred 
in Python using libraries including Rasterio, NumPy, and scikit- 
learn. Google Earth Pro was extremely helpful for both ground- 
truth validation and comparison of historical imagery. 

RESULTS AND DISCUSSION 

COMPARISON OF CLASSIFICATION PERFORMANCE 

The classification performance over three study years 2000, 2010, 
and 2020 using user accuracy (UA), producer accuracy (PA), 
overall accuracy (OA), and kappa coefficient (KC) clearly brought 
out the differences between these four classifiers: maximum 
likelihood classification (MLC), k-means, minimum distance 
classifier (MDC), and parallelepiped classifier (PPC) (Tab. S1). In 
2000 MLC attained the highest OA of 86.80% with a balanced UA 
of 80.66% and PA of 81.17%, supported by an appropriately 
strong kappa value of 0.86. Class-wise is also performed best 
toward the identification of dense forest (UA = 90.00%, 
PA = 100.00%), oil palm plantation (UA = 90.00%, PA = 90.00%), 
and open grassy area (UA = 80.00%, PA = 100.00%). The results 
obtained by k-means are significantly lower, with an OA are 
72.00% and a mean of UA with approximately 71.50%. There was 
misclassification between oil palm (UA = 66.00%, PA = 62.50%) 
and rubber plantation (UA = 64.00%, PA = 66.00%) in the study. 
This misclassification was mainly attributed to spectral overlaps 
as noted by Othman et al. (2019). MDC generated an OA equal to 
61.5%, with UA near about 57.09%, and PA near about 74.74%, 
and kappa equal to 0.58, accompanied by high omission errors for 
the rubber plantation, where UA equalled only 54.55% and PA 
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just reached up to 60.00%. PPC achieved a classification accuracy 
of 65.10% based on the OA, with a kappa value of 0.59. How- 
ever, the model showed significant omission for certain classes, 
particularly rubber plantation, where both the UA and PA 
were zero. 

By 2010, MLC stayed on top with OA = 91.30%, 
UA = 77.33%, PA = 87.83%, and KC = 0.82. It got the perfect 
score for open grassy area (UA = 100.00%, PA = 100.00%) and 
high marks for rubber plantation (UA = 90.00%, PA = 100.00%). 
Method k-means increased to OA = 83.30% (UA = 69.16%, 
PA = 73.33%, KC = 0.58) but still had trouble clear of oil palm 
(UA = 67.00%, PA = 63.00%) from rubber plantation 
(UA = 65.00%, PA = 67.50%). MDC decreased to OA = 47.60% 
(UA ≈ 48.33%, PA ≈ 65.56%; KC = 0.43), showing big spectral 
errors, mostly between dense and thin woods, while PPC resulted 
an OA with approximately fifty-two percent only (UA ≈ 75.00, 
PA ≈ 45.00, KC = 0.46). In 2020, even with more land cover 
breakup, MLC is still on top of OA = 92.70%, UA = 79.48%, 
PA = 81.33% and KC = 0.79. It does very well for rubber 
plantation (UA = 70.00%, PA = 100.00%) and sparse forest 
(UA = 80.00%, PA = 72.73%). Method k-means gets its best OA at 
85.30% (UA = 68.82%, PA = 70.68%, KC = 0.61) but still mixes up 
oil palm (UA = 65.00%, PA = 60.50%) and rubber plantation 
(UA = 63.5%, PA = 65.0%). MDC gives OA = 48.9% 
(UA ≈ 49.38%, PA ≈ 60.83%; KC = 0.44), does very badly for 
oil palm (UA = 100.00%, PA = 25.00%). PPC gets OA at 72.60% 
(UA = 65.00%, PA = 49.67%, KC = 0.69) but misses out totally on 
oil palm plantation (UA = 0.00%; PA = 0.00%). 

MLC minimised both commission (high UA) and omission 
(high PA) errors across the three-time frames. It worked better 
for spectrally similar tropical land cover classes, e.g., oil palm and 
rubber plantation. An increasing trend was consistent with 
k-means but hampered by some basic problems of unsupervised 
clustering, mainly confusion between certain types of vegetation 
that are spectrally overlapping, as discussed by Sari et al. (2023). 
A method dependent only on simple Euclidean distance is not 
appropriate for heterogeneous landscapes, such as MDC; while 
spectral boundaries are too rigid leading to severe omission errors 
even when purity is quite high for certain classes, such as PPC, 
according to Zhang Liu and Biljecki (2023). This finding falls 
among recent research advocating hybridisation of the statistical 
strength of MLC with contextual and object-based fine-tuning 
towards maximising accuracy combined with flexibility under 
highly dynamic tropical settings. 

VEGETATION COVER DISTRIBUTION  
AND CHANGE PATTERNS 

Table 3 in the temporal analysis captures major landscape 
changes between 2000 and 2020 in Raub District, with explicit 
results of human activities. It is an alarming trend under all four 
classification methods that dense forest cover is decreasing 
concomitant with increasing oil palm plantations and open grassy 
areas. Dense forests have recorded reductions across all classifiers. 
For instance, k-means results revealed that in 2000 (Fig. 2a), an 
estimated area of 115,000 ha was reduced to 84,000 ha by 2020 
(Fig. 2c); thus proposing a net loss of about 31,000 ha (27%) 
(Fig. 2a–c), MLC records decline from 118,200 ha to 86,100 ha 
within the same period (Fig. 3a–c). This pattern reflects much 
wider regional trends toward deforestation elsewhere in Southeast 

Asia as a result of agricultural expansion, in particular oil palm 
cultivation, and infrastructure development. The dense forest 
decline signifies not only habitat loss but also carbon storage, 
hydrological regulation, and biodiversity integrity (Curtis et al., 
2018). Oil palm plantations have been expanding massively 
during the two decades; k-means results highlight that they were 
only 22,000 ha in 2000 but reached 41,500 ha by 2020 (88.6% 
increase) (Fig. 2a–c). MLC has similar growth patterns (21,100– 
40,300 ha) (Fig. 3a–c) and MDC (20,900–40,200 ha) (Fig. 4a–c). 
Malaysia is a global leader in palm oil production hence such 
expansion reflects sustainability issues on greenhouse gas 
emissions from peatland draining and threats to biodiversity as 
highlighted by Meijaard et al. (2020). The fast pace of replacing 
forests with oil palms signals economic resilience taking 
precedence over ecological considerations. 

Sparse forest area exhibits fluctuating patterns, increasing 
from 2000 to 2010 and then decreasing by 2020. For example, 
under MDC it was 43,200 ha in 2000 and increased to 51,000 ha 
by 2010 and then reduced to 47,200 ha by 2020. This might be 
indicative of a forest degradation pathway land cover mosaic 
where the sparse forest is first created and then later converted 

Table 3. Area distribution by vegetation class 

Vegetation class 
Area (ha) in the year 

2000 2010 2020 

k-means 

Dense forest 115,000 96,000 84,000 

Sparse forest 45,000 52,500 48,300 

Oil palm plantation 22,000 31,200 41,500 

Rubber plantation 25,000 30,100 28,600 

Open grassy area 6,500 10,200 15,400 

MLC 

Dense forest 118,200 98,700 86,100 

Sparse forest 42,800 50,300 46,800 

Oil palm plantation 21,100 30,700 40,300 

Rubber plantation 24,600 28,500 27,000 

Open grassy area 5,900 9,800 14,200 

MDC 

Dense forest 113,500 95,200 83,500 

Sparse forest 43,200 51,000 47,200 

Oil palm plantation 20,900 30,500   40,200 

Rubber plantation 24,400 28,900 27,300 

Open grassy area 6,100 9,700 14,600 

PPC 

Dense forest 114,200 96,300 84,800 

Sparse forest 43,500 51,300 47,400 

Oil palm plantation 21,200 30,800 40,400 

Rubber plantation 24,700 29,000 27,400 

Open grassy area 6,000 9,600 14,500  

Explanations: MLC = maximum likelihood classification, MDC = min-
imum distance classifier, PPC = parallelepiped classifier. 
Source: own study. 
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into plantations. Such landscapes have been described as being in 
an ecologically vulnerable state which is likely to be further 
degraded if not managed with restoration interventions (Maxwell 
et al., 2020). Open grassy areas about doubled their size under 
most classifiers. Under PPC they increased from 6,000 ha in the 
year 2000 to 14,500 ha by the year 2020 (Fig. 5a–c). This could be 
interpreted to be an increase in the abandonment of lands 
that have been degraded probably due to overexploitation or else 
cleared for new agricultural use. Though they do deliver some 
ecosystem services, grassy areas are much less biodiverse than the 
forests they replace and might indicate a wider ecological decline. 
Trends match well between classifiers but with small differences 
in area estimates that show methodological sensitivities. MLC 
always gives slightly higher dense forest areas than k-means 
because of its probabilistic pixel classification advantage in 

distinguishing spectrally similar classes. Consistency across 
methods actually aids in making such observed patterns; it 
suggests that the detected land cover transitions are not some 
artefacts of the classification technique but rather genuine land 
use/land cover change. At the broadest level, over two decades 
Raub’s, changing vegetation type distributions reflect the 
replacement of forest-dominated landscapes with agro-industrial 
systems. This shift may advance economic development goals but 
comes at a considerable ecological cost. They underscore the need 
for balanced land use planning, taking into consideration 
development and environmental sustainability. They also prove 
the valuableness of remote sensing technologies in guiding and 
directing decisions regarding land management, particularly in 
tropical regions that possess high biodiversity where rapid 
transformations of lands are taking place. 

Fig. 2. The k-means classification results for images: a) 2000, b) 2010, 
c) 2020; source: own study 
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CLASSIFIER STRENGTHS AND LIMITATIONS 

Changes in vegetation vigour, which reflect variations in 
vegetation cover density and health, are influenced by the spatial 
extent and classification of land cover over time. These changes 
were derived from comparing classified maps from different 
years. Out of the three supervised MLC, MDC, and PPC as well as 
k-means clustering used, it has always been MLC that turned out 
to be the most accurate for all years. This basically gives an idea 
about the fact that as a supervised classification operating in 
a probability domain, MLC uses statistically representative 
training data to assign each pixel to land cover classes based on 
its probability of belonging to certain classes. The probabilistic 
approach assumes spectral signatures distribution for every class 

under normal conditions, something quite realistic in most 
applications of remote sensing, and enables detailed differentia-
tion between spectrally similar vegetation types such as oil palm 
and rubber plantations or sparse forest and open grassy areas (Li 
et al., 2012; Jensen, 2021). For example, linear plantation 
boundaries and transitional vegetation zones are delineated with 
high precision. Therefore, it becomes very useful in more detailed 
agricultural area expansion and forest fragmentation studies. The 
ability to model intra-class variability adds up to its good 
performance in areas where there is high spectral confusion due 
to overlapping canopy structures, or mixed landcovers prevalent 
in tropical landscapes (Foody, 2020). However, adequate, high 
quality, and representative training data, on which MLC is 
dependent, remains a handicap in remote and also cloud-prone 

Fig. 3. The maximum likelihood classification (MLC) classification 
results for images: a) 2000, b) 2010, c) 2020; source: own study 
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areas. Any bias present in the training set will be carried into the 
classification itself. 

The MDC is almost as good as the MLC. Mean values from 
reference samples are calculated and the spectrum’s Euclidean 
distance for each class is determined. It runs fast and does not 
depend much on the assumption of normality (Sharma Banjade, 
Rai and Subedi, 2023). This method works well where spectral 
means between classes are distinct without much variance within 
classes. It will break down if there is spectral overlap between 
classes, such as might occur with rubber and oil palm plantations 
across a heterogeneous landscape like Raub, for example. Unlike 
the MLC, it does not use information on class variance and 
covariance; hence, it will be less robust under conditions of mixed 
pixels but better than most unsupervised approaches. In Raub, 

PPC’s rigid boundary rules resulted in high omission errors, 
particularly for rubber plantations in 2010 and 2020, where 
spectral variability within plantation canopies fell outside the 
classifier’s thresholds. This explains why PPC reported UA and 
PA values of zero for rubber plantations, highlighting its 
unsuitability for heterogeneous tropical mosaics (Shiraishi et al., 
2014). Classes that have tightly bounded spectral ranges and 
internal variability such as water bodies or bare land will work 
well but vegetation classes which typically have high intra-class 
variance may be misclassified. It is simple and hence fast but does 
not have the statistical strength of MLC nor adaptability of MDC 
and hence would rather be used for coarse classification tasks or 
perhaps as part of hybrid approaches. 

Fig. 4. The minimum distance classifier (MDC) classification results for 
images: a) 2000, b) 2010, c) 2020; source: own study 
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Method k-means being of an unsupervised nature does not 
necessarily need labelled training data. It is a process where 
spectrally similar pixels are grouped into classes and then 
manually assigned to vegetation classes. Therefore, this algorithm 
can be optimally applied for quick surveys or exploratory mapping 
tasks and when no ground truth data are available (Jensen, 2021). 
But the method is fraught with some problems over heterogeneous 
landscapes, such as typically confusing sparse forest with open 
grassy areas and difficulty in separating out rubber plantations 
from other woody vegetation. This is because its determination 
strictly depends on spectral distance metrics, i.e., without 
consideration of any contextual or spatial information, leading 
to instability within mixed-pixel zones which are exactly the areas 
of interest in degradation and regeneration monitoring (Foody, 

2020). Besides, subjectivity introduced by manual labelling after 
clustering may reduce temporal consistency. In comparative 
evaluation, the overall ranking of performance in the Raub case 
study goes as: MLC > k-means > MDC > PPC. Long-term detailed 
monitoring requiring policy relevance prefers MLC due to its 
statistical rigor and adaptability when the training data is available; 
meanwhile, systems offering a simpler structure with rather high 
accuracy in situations where spectral overlap is not so wide are 
preferred. Where class boundaries are well defined, PPC can 
provide quick classifications that are less useful in cases of 
vegetative mapping with complex spectral information. The 
unsupervised k-means approach retains some utility in rapid- 
resource-limited assessments or even as a preliminary step before 
application of more robust supervised methods. Method k-means 

Fig. 5. The parallelepiped classifier (PPC) classification results for 
images: a) 2000, b) 2010, c) 2020; source: own study 
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as exploratory analysis, followed by MLC for fine mapping, with 
MDC or PPC as possible stopgaps between degrees of data 
availability and landscape heterogeneity, will synthesise toward 
strong monitoring praxis. This steps the line between best praxis 
in tropical forestry monitoring whereby method choice is 
subordinated to resource context and desired degree of classifica-
tion accuracy (Edwards et al., 2019; Maxwell et al., 2020). 

IMPLICATIONS OF VEGETATION CHANGE 

A twenty-year comparison of vegetation change in Raub District 
from four classifying methods: MLC, MDC, PC, and k-means 
clustering; reflects major ecological transformations that bear 
equally great policy consequences. The dominant trend common 
to all classifiers is the high magnitude of reduction in dense forest 
cover from more than 113,500–118,200 ha in 2000 to only 
83,500–86,100 ha by 2020. This reflects general Southeast Asian 
trends in deforestation where large tracts of forests are cleared for 
oil palm and rubber monocultures (Dhandapani, Yule and 
Drewer, 2024; Saharudin, Jeswani and Azapagic, 2024). Tropical 
forests are important in the sequestration of carbon, climate 
regulation, hydrological balance, and biodiversity conservation. 
Removal of these forests leads to habitat fragmentation and 
consequently resilience attributed to ecological strength when it 
comes to adjustments under climatic conditions. The conversion 
increases the aboveground biomass carbon stocks lost which puts 
Malaysia as a nation at a disadvantage in fulfilling its interna-
tional commitments related to climate change. These plantations 
contain more carbon than open land; however, they can never 
carry out the intricate ecological functions fulfilled by a complete 
forest. Besides, such monoculture systems are further intensified 
by mechanical clearing, chemical input, and hydrological 
modification, simplifying habitat structure, hence narrowing 
niche diversity and restricting native species persistence. 

By 2020, it also noted about a threefold increase of open 
grassy areas consistently across classifiers as an indication of 
degradation after clearing or conversion failure to productive 
plantations. Other such degraded land elsewhere in Malaysia was 
found to have low biodiversity value but high risks for erosion 
when rainfall is heavy (Sari et al., 2023). While ours is not a soil 
process classification, expansion of grassland area detected here in 
Raub does indicate increasing susceptibility to land degradation 
that will probably have downstream effects on water quality and 
local agriculture. From the wider social and economic perspec-
tive, this means that rural livelihoods and export revenues 
continue to be sustained by oil palm and rubber plantations 
expansion (Ahmad et al., 2024). However, these take place at the 
expense of forest-dependent communities alongside long-term 
ecological sustainability. This finding also supports further 
advocacy for the integrated land-use policy that introduces 
agroforestry systems together with a multifunctional landscape 
mosaic which contains natural corridors (Saharudin, Jeswani and 
Azapagic, 2024; Tiko et al., 2025). Another important lesson 
emphasised by this study is that method choices in vegetation 
monitoring have considerable effects on its reliability. As MLC 
generated results that were systematic and highly accurate, it thus 
becomes the most reliable method in providing estimates where 
decisions are extremely relevant to policies being developed. 
Other methods can complement roles as long as data or resource 
constraints exist. 

CONCLUSIONS 

The study of vegetation cover changes in Raub District, Pahang, 
Malaysia, can be divided into: 
• selection of classification method: the choice of classification 

method is crucial for accurate vegetation cover change detec-
tion; 

• best method: maximum likelihood classification (MLC) consist-
ently performed best due to its ability to distinguish spectrally 
similar classes like oil palm and rubber plantations; 

• minimum distance classifier (MDC) and parallelepiped classi-
fier (PPC): MDC performs well when spectral means are well- 
separated but poorly when overlaps occur, while PPC is fast but 
less accurate in complex vegetation mosaics; 

• k-means: k-means is quick and requires minimal data, but it has 
high error rates, particularly in open grassy areas; 

• vegetation trends: all classifiers revealed that dense forests are 
being replaced by oil palm, rubber plantations, and expanding 
open grassy areas, reflecting broader deforestation and agricul-
tural intensification in Southeast Asia; 

• environmental impact: these changes lead to reduced biodiver-
sity, disrupted hydrological systems, lower carbon storage, and 
increased land degradation risks; 

• methodology recommendations: for long-term monitoring, 
multi-data classification (MLC) should be the default choice, 
with MDC or PPC as fallbacks, and k-means used only for 
preliminary assessments; 

• policy implication: a tiered monitoring framework using these 
methods can support evidence-based land-use policies balan-
cing economic development, biodiversity conservation, and cli-
mate resilience. 
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