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Abstract: This study evaluates and compares four algorithms: maximum likelihood classification (MLC), minimum
distance classifier (MDC), parallelepiped classifier (PPC), and k-means clustering, on their performance in detecting
change of vegetation cover from multi-temporal Landsat images in Raub District, Malaysia in 2000-2020. The accuracy
assessment is based on 150 stratified random points using overall accuracy (OA), user’s accuracy (UA), producer’s
accuracy (PA), and kappa coefficient (KC). MLC resulted as the most accurate for all the years with OA ranging from
86.8 to 92.7% and kappa values between 0.79 and 0.86; besides it was found to be better for distinguishing some
spectrally similar land covers such as oil palm (UA = 90%; PA = 90-100%) and rubber plantation (UA = 70-90%;
PA = 100%). The k-means result has moderate accuracy with KC values ranging from 72.0 to 85.3% but this method
mostly confused open grassy area with sparse forest area. MDC and PPC did not perform well; OA got as low as 47.6%.
Moreover, high omission error was found in PPC when certain classes were absolutely omitted in a particular year.
Dense forest decline was more than 27% (115,000-118,200 ha in 2000 to 83,500-86,100 ha by 2020), accompanied by
about an 88% increase in areas under oil palm plantations. Open grassy areas doubled. The overall classification
performances ranged best to poorest as: MLC > k-mean > MDC > PPC. These findings validate that MLC is the most
dependable method for instituting policy-relevant monitoring over highly heterogeneous tropical landscapes while
k-means delivers a rapid prelude and MDC/PPC are options with limited data or computational constraints.

Keywords: accuracy assessment, k-mean, maximum likelihood classification (MLC), minimum distance classifier

(MDC), parallelepiped classifier (PPC), tropical deforestation

INTRODUCTION

Malaysia’s land cover dynamics are undergoing profound transfor-
mations. Agricultural expansion largely comprises oil palm and
rubber plantations, coupled with urbanisation and infrastructural
development taking place in the country. Such changes have great
implications on biodiversity loss, climate regulation, and hydro-
logical stability of highly biodiverse areas like regions as Pahang.
Remote sensing studies show a huge forest cover drop in Malaysia
over the last two decades where more dense forests are continuously
replaced by monoculture plantations and degraded open areas
(Othman et al., 2019). Monoculture plantations further enhance hab-
itat fragmentation while reducing carbon sequestration capacity

besides increasing erosion and sedimentation in the river basins
(Shrestha, 2011). Even after several policy commitments effective
monitoring of these types of landcover changes is still missing due to
accessibility to data, classification accuracy, and integration of
temporal change analysis into decision-making processes. To bridge
these gaps demands classification robustness in perceiving subtle
spectral differences within the heterogeneous tropical landscapes,
where classes of vegetation most often demonstrate high intra-class
variability and then overlap between spectrums.

It is within this context that the choice of appropriate
remote sensing classification techniques in such a way as to
enhance reliable land cover mapping and change detection proves
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very critical. Among these, maximum likelihood classification
(MLC), minimum distance classifier (MDC), parallelepiped
classifier (PPC), and k-means clustering provide methodological
strengths and weaknesses from some perspectives when applied
in Malaysia’s actual rather complex tropical environments. MLC
builds on a more comprehensive variance-covariance-based
description of class spectral distributions, thus enabling dis-
crimination among spectrally similar classes, for example, oil
palm and rubber plantations, often found in Malaysian land-
scapes (Hu and Tan, 2025). MDC does not include variance-
covariance because this method is less time-consuming; hence,
situations always found around heterogeneous areas with large
spectral overlaps prove less dependable (Sharma Banjade, Rai and
Subedi, 2023). PPC is reliable where well-defined class boundaries
exist but return high omission errors wherein the variability
within classes. Method k-means being an unsupervised algorithm
performs well where data is not available or for a preliminary
assessment, but since the method is based only on spectral
similarity, it mostly misclassifies sparse forest with open grassy
areas. Such methodological nuances are critical in deciding what
classification strategy would be appropriate to meet accuracy and
efficiency requirements as well as the availability of data in
tropical vegetation monitoring.

This study carries out an extensive comparative assessment
between MLC, MDC, PPC, and k-means classification algorithms
in terms of their ability to detect vegetation cover changes over
the Raub District of Pahang State, Malaysia for a series as long as
twenty years, specifically from 2000 to 2020, taking into account
these environmental and methodological premises. A specific
objective includes quantification of temporal change among the
five major classes of vegetation: dense forest, sparse forest, oil
palm plantation, rubber plantation, and open grassy area, from
multi-temporal Landsat imagery and an assessment plus compar-
ison in terms of standard measures on the accuracy of supervised
against unsupervised results (kappa), followed by a critical
discussion on how larger methodical weaknesses hinder applica-
tion potential in the typically heterogenous tropical landscape
patterns found across Malaysia. Hence, this research shall be
developed with integration between accuracy appraisal and
change detection analysis that improves methodological choices
for empirically validated land cover monitoring towards sustain-
able land management in biodiversity-sensitive region policies.

Land use/land cover (LULC) change represents one of the
most important global environmental issues with changes
initiated by agricultural development, deforestation, infrastruc-
ture development, and urbanisation. In recent decades, large-scale
conversions from natural vegetation to monoculture plantations,
croplands, and built-up areas have significantly altered ecosystem
structure and function across tropical, temperate, and boreal
zones (Othman et al., 2019; Tiko et al., 2025). These changes have
profound impacts on biodiversity, carbon storage, and hydro-
logical regulation, which in turn cascade into broader socio-
economic consequences. Monitoring such dynamics at policy-
relevant spatial and temporal scales requires robust, accurate, and
repeatable analytical techniques. Remote sensing provides this
potential since multi-temporal satellite data can regularly observe
LULC transitions and make them available for analysis (Chen
et al., 2025). The reliability of these assessments depends largely
on the classification method applied and the rigor of the
classification performance evaluation.

Supervised classification is the basic approach in remote
sensing whereby the analyst selects representative training
samples for each class of land cover. The classifier then uses
these labelled data to model the spectral characteristics of each
class throughout the entire image (Richards and Jia, 2006). The
method utilises a priori knowledge about study areas and allows
statistical decision rules that maximise the separability between
classes, hence reducing misclassification rates (Chowdhury,
2024). In modern applications, supervised methods always find
huge relevance even with increasing popularity for object-based
and machine learning approaches due to interpretability issues,
less computational intensity, and multi-temporal datasets’
compatibility (Chen et al., 2025). Maximum likelihood classifica-
tion (MLC) has been very popular and statistically valid in
heterogeneous landscapes. It assumes that the spectral distribu-
tion of classes falls under a multivariate normal distribution and
calculates for every pixel its probability to belong to any particular
class, assigning it finally to the class with the highest posterior
probability (Foody, 2002; Hu and Tan, 2025). This hence allows
MLC to take into consideration not only the mean vector but also
variance-covariance structure information within training data
where spectral signatures from different classes seem to be
overlapping. In agricultural-forest mosaics or some types of
mixed vegetation, this is rather common. Recent studies prove
that MLC is still better than simpler supervised methods
regarding total accuracy and Kappa coefficients when intra-class
variability is high (Varga et al., 2022; Chen et al., 2025).

The minimum distance (MDC) algorithm computes the
distance between the mean spectral value of each class and that of
the pixel. It does not consider variance or covariance information,
thus essentially assuming spherical class boundaries. Therefore, it
runs faster but introduces more errors whenever classes are
elliptically or anisotropically distributed in the spectral space
(Varga et al., 2022). The decision boundary of a parallelepiped
classifier is aligned with axes and is determined by minimum to
maximum values (standard deviations) for each band. It can be
calculated very quickly but has two very important weaknesses:
(1) any pixel that falls outside all parallelepipeds will be
unclassified, thus reducing completeness, and (2) if a pixel falls
inside more than one parallelepiped, this becomes an assignment
problem where there is ambiguity (NV5 Geospatial Software,
2024). This becomes a real problem in intricate landscapes as
spectral overlaps among classes become frequent. In view of these
methodological considerations, MLC can be said to have ensured
the best possible statistical rigor, accuracy, and robustness in
multi-temporal land cover analyses. The method incorporates
class variance-covariance thereby ensuring more reliable dis-
crimination among spectrally similar classes leading to reduced
omission as well as commission errors and outputting classifica-
tion results that are even much more suitable for change detection
as well as environmental monitoring that has direct relevance to
policies being formulated (Chen et al., 2025; Hu and Tan, 2025).

Unsupervised classification in remote sensing is defined as
the method of clustering image pixels by their spectral similarities
with no prior information or ground truths for training data
(Lillesand, Kiefer and Chipman, 2015). In most cases, this will be
followed up by labelling where the analyst determines what each
cluster represents and assigns that cluster to a land cover class
using extra information such as high-resolution imagery or
observations from the field. The labelling is normally done after
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running the k-means algorithm which happened to be the most
popular among them all. Basically, it partitions the dataset into
k clusters by an internal iterative process minimising within-
cluster variance (Han and Lee, 2023). The major strength of
unsupervised classification is that it does not depend on reference
data, thus quite handy in data-poor situations, for preliminary
mapping exercises, or to explore some analytical work where
pattern detection is the objective without any pre-established class
definitions (Hu and Tan, 2025). Method k-means is easily
computed and feasible for large datasets, which makes it
applicable to perform rapid assessments over a wide area when
that area happens to be remote or poorly accessible. Some recent
innovations have made their way into the method by paralleling it
and improving initialisation to move toward tackling sensitivity
regarding initial cluster centers as well as issues related to local
minima (Han and Lee, 2023).

The unsupervised classification bears intrinsic weakness.
Since no a priori knowledge is used in its development, thus
unable to model class-specific spectral variance or covariance,
there would be much more misclassification in heterogeneous
landscapes with overlap among spectral signatures (Hu and Tan,
2025). The output of this algorithm can also vary from run to run
due to the phenomenon known as “label switching” because the
same cluster index from different images might refer to different
land cover types. This complicates multi-temporal analysis when
change detection is concerned. In addition, spectrally similar
vegetation types aggregate into one cluster most of the time
reducing thematic detail and accuracy. Method k-means can be
very useful in the absence of ancillary data or as another approach
within hybrid methods that also implement supervised classifica-
tions. Where thematic accuracy is a concern, especially in policy-
oriented land cover monitoring and change detection, unsuper-
vised results are best used only as a baseline or background
mapping to be improved on later by more specific, supervised
mappings (Chen et al., 2025; Hu and Tan, 2025).

MATERIALS AND METHODOLOGY
STUDY AREA

The study area is located in Raub District, on the western side of
Pahang State, Peninsular Malaysia (Fig. 1). Raub extends over
predominantly rural and forest land; its neighbouring districts are
Bentong to the south and Lipis to the north, with Kuala Lipis and
Jerantut on its eastern front. The district is situated between
approximately 3°40'N to 3°55'N and 101°35E to 101°55'E,
covering about 2,271 km’. Rich in biodiversity within thick
tropical rainforests, fertile land suitable for agriculture develop-
ment defines it as an ecological draw card for Raub itself.
Traditionally known as a gold mining area together with rubber
estates within the district boundaries, recent decades have
increasingly shifted land use towards oil palm plantations besides
mixed agriculture activities. This observed change has effects on
land cover patterns that include forest fragmentation and
plantation agriculture expanding plus newly found open grassy
patches. The study area gets a wet tropical climate with lots of rain
and small changes in seasons helping plants grow all year. Yet, the
current land making works in Raub have brought about spatial
and ecological difference, setting it up as a great spot for looking at
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Fig. 1. The study area of Raub Districts, Pahang; source: own elaboration

land use change and comparing different ways of classifying things
seen from far away. The study place was marked out using
shapefiles of admin limits and shown in UTM Zone 47 North
(WGS 84) for keeping space the same all through the check.

SATELLITE DATA ACQUISITION, IMAGE PREPROCESSING
AND VEGETATION CLASSIFICATION SCHEME

To capture vegetation patterns and changes over time, Landsat
satellite images were used for the years 2000, 2010, and 2020.
They were downloaded from Earth Explorer (Tab. 1). The
imagery for both the year 2000 and 2010 come from the Landsat
5 Thematic Mapper (TM) sensor while data for the year 2020 is
available in Landsat 8 Operational Land Imager (OLI). All images
selected have less than a ten percent cloud cover as well as being
acquired during a dry season to minimise atmospheric inter-
ference and maximise spectral separability.

Table 1. Landsat satellite imagery used for vegetation analysis in
Raub District (2000-2020)

Date Sensor Bands used resolsftailgzl (m) Clou((;sover
24 Aug 2000 L;’f;;t Bands 1-5, 7 30 <10
01 Jun 2010 L;I‘le\s/ft Bands 1-5, 7 30 <10
09 Apr 2020 L;rglzit Bands 1-7 30 <10

Source: https://www.usgs.gov/landsat-missions/landsat-satellite-missions.
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Preprocessing of all the images was done in ENVI, QGIS,
and Python so as to make them consistent and comparable. The
dark object subtraction (DOS) method has been used here
for haze reduction towards getting good surface reflectance
values. These have then been geometrically corrected and
reprojected into the UTM Zone 47N coordinate system.
Subsetting took place with the help of a boundary shapefile
that had already been defined for the study area. After that
spectral bands were stacked to form composite layers ready for
classification. The classification scheme was intended to reflect
the major vegetation types identified within the study area
(Tab. 2). It has been applied equally in all methods of
classification and years used to undertake a comparison.

Table 2. Classification categories and descriptions of dominant
vegetation types in Raub District

Category Description

highly compact and closed-canopy forest areas

Dense forest
with rich biomass

forested areas with lower canopy density or more

Sparse forest
P fragmented tree cover

commercial plantations cultivated for oil palm

Oil palm plantation production

areas planted with rubber trees, typically in linear

Rubber plantation
patterns

open fields dominated by grasses or herbaceous

Open grassy area .
pen grassy vegetation

Source: own elaboration.

SUPERVISED AND UNSUPERVISED
CLASSIFICATION TECHNIQUES APPROACH

In remote sensing, classification techniques can be broadly
categorised as supervised and unsupervised. The two categories
differ in their data requirements, operational principles, and
resultant accuracies. In this study, the two categories were
implemented through k-means clustering, maximum likelihood
classification (MLC), minimum distance classifier (MDC), and
parallelepiped classifier (PPC). Method k-means, being an
unsupervised algorithm, was run on annual composite images
with five initial cluster centers where pixels were grouped only
by spectral similarity without using any training data. Clusters
were then relabelled to pre-defined vegetation classes manually
with the help of Google Earth imagery and Landsat composites.
The other three methods: MLC, MDC, and PPC; are supervised
and needed 70-100 manually digitised samples per class from
high-resolution imagery and verified vegetation patches for
training. MLC assigns a pixel to the class that has the highest
posterior probability assuming a multivariate normal distribution
of spectral signatures; MDC classifies a pixel by the shortest
Euclidean distance to class means; PPC assigns all pixels whose
spectral values fall within minimum-maximum thresholds for
each class. Hence, probability-based, distance-based, range-based,
and unsupervised methods could strictly rigorously comparatively
evaluate which one would accurately detect vegetation change in
such heterogeneous landscapes found in the tropics.

The MLC method is generally more statistically based
among the above three methods and works in a probability

domain assuming for each class a multivariate normal distribu-
tion. It assigns a pixel vector, x, to that class, i, for which the
following discriminant function (g;)X is maximum (Eq. 1):

5i(X) = — 3Tl = 5 (X —m)" 32 (0 =) +In Pwy) (1)

where: m; = vector, ¥; = covariance matric, |X;| = determinant,
P(w;) = prior probability of class i, X = vector of input features
(Li et al., 2012).

Through the use of both variance and covariance, MLC is
highly responsive to high spectral overlap, therefore making it
capable of separating spectrally similar classes like oil palm and
rubber plantations that occur within heterogeneous tropical
landscapes (Shiraishi et al., 2014). MDC is also a simple supervised
technique by which pixels are allocated to that class whose mean
spectral vector has the minimum Euclidean distance (Eq. 2).

n

> (@ —map)? 2)

b=1

d;(X) =

where: x;, = pixel value in band b, my = class mean for band b,
n = number of spectral bands.

MDC is computationally efficient and accurate where class
means are well separated but becomes less dependable under
conditions of high spectral similarity since it does not take into
account the variance and covariance of classes (Sharma Banjade,
Rai and Subedi, 2023). PPC defines rectangular decision
boundaries in spectral space using the minimum and maximum
training values for each band in each class. A pixel x belongs to
class i if (Eq. 3):

miny, < z;, < maxy, (3)

where: min;, and max;, are spectral limits for band b in class i.

PPC is quick and best for clearly defined classes with low
internal differences but does not work well in complex plant
patterns where there is high variation within the same group.
Unlike supervised learning, the k-means clustering method falls
under unsupervised classification. It does not need any training
data. Method k-means simply breaks pixels into k groups based
only on colour likeness, step by step reducing inside group
difference (Eq. 4).

v
=3 > I X—wlP 4)

i=1 zeC;

where: C; = set of pixels in cluster i, y; = cluster centroid,
[l II = Euclidean distance.

While k-means is rapid and valuable for exploratory
mapping in data-poor contexts, it is prone to misclassification
in heterogeneous landscapes, such as confusing sparse forest with
open grassy areas, because it relies solely on spectral distance

without spatial or contextual cues (Sari et al., 2023).

ACCURACY ASSESSMENT

For both supervised and unsupervised methods, the same set of
150 stratified random sample points was used for each year to
ensure direct comparability of results. These points were evenly
distributed across the five land cover classes, with 30 points
allocated per class, irrespective of class area, in accordance with
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standard accuracy assessment procedures. The metrics are
important in evaluating classification performance and have
found application as standard metrics within remote sensing
applications for this purpose (Shiraishi et al., 2014; Sari et al.,
2023). Classification performance was evaluated using a confusion
matrix (error matrix) for each classifier and year of cross-
tabulating reference labels against classified labels. Four standard
performance metrics were computed from this matrix: overall
accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA),
and kappa coefficient (KC). The OA measures the proportion of
correctly classified samples relative to the total number of
reference points (Eq. 5):

k .
0A = Z:Tm -100 (5)

where: k = number of class, n;; = numbers of correctly classified
samples for class i, N = total number of samples (150 in this
study).

In the error matrix used, 1 denotes the number of samples
classified as class i (classifier output) while their reference or
ground truth class is j. The UA for the class i expresses the
probability that a pixel assigned to class i truly belongs to the class
in the reference data, indicating commission error (Eq. 6).
Conversely, PA for class i measures the probability that a reference
pixel of class i was correctly classified, representing omission
error (Eq. 7). Lastly, KC quantifies the agreement between the
classification and the reference data while adjusting for agreement
that could occur by chance (Eq. 8); where the expected agreement
P, is computed as in Equation (9).

UA; =—"" 100 (6)
i %
D1 i
o
PA; = 100 (7)
21 i
OA—P,
KC=—7— 8
D, (8)

k & i
>ict <Z]‘:1 Tij 21:1 ”ﬁ)
P = = 9)

Generally, these metrics give a broad view of classification
performance: OA is an overall measure of accuracy, UA gives the
map reliability from the user’s side, PA expresses completeness
from the producer’s point of view, and KC is a statistically
adjusted measure of total agreement. Therefore, a stringent
comparison of MLC, MDC, PPC, and k-means classification
methods that will translate into which method brings out most
reliably the vegetation change in diverse tropical landscapes
within Raub District can be performed.

VEGETATION CHANGE DETECTION

Maps of 2000, 2010, and 2020 were compared pixel-by-pixel to
detect change in an after-classification comparison using
Equation (10) so as to be able to trace the dynamism of

vegetation composition. For instance, it could easily be identified
whether the land use was dense forest or had transformed into oil
palm plantation; or from rubber plantation to open grassy area.

AC, =Cpy, — Cpyy (10)
where: C, ;1 = class label of pixel p at time t;, C,, » = class label of
pixel p at time t,, AC, = change code (0 = no change, #0 = change
type).

Meanwhile, matrices for change (as in Eq. (11) and Eq. (12))
were developed that summarised the area of transitions, and zonal
statistics facilitated the provision of information on changes in
hectares for every vegetation class.

A;j = M;; - pixel area (11)

M;;

Pj=——yf—-
S Yo M

100 (12)

where: M;; (for i # j) = changed pixels from class i to j.
All spatial analyses and area calculations were conducted
using QGIS.

SOFTWARE AND TOOLS

Geospatial tools were many within the workflow for this analysis.
Image correction and classification were performed in ENVIL
Spatial analyses and visualisations took place in QGIS. Statistical
computation and classification performance evaluation occurred
in Python using libraries including Rasterio, NumPy, and scikit-
learn. Google Earth Pro was extremely helpful for both ground-
truth validation and comparison of historical imagery.

RESULTS AND DISCUSSION

COMPARISON OF CLASSIFICATION PERFORMANCE

The classification performance over three study years 2000, 2010,
and 2020 using user accuracy (UA), producer accuracy (PA),
overall accuracy (OA), and kappa coefficient (KC) clearly brought
out the differences between these four classifiers: maximum
likelihood classification (MLC), k-means, minimum distance
classifier (MDC), and parallelepiped classifier (PPC) (Tab. S1). In
2000 MLC attained the highest OA of 86.80% with a balanced UA
of 80.66% and PA of 81.17%, supported by an appropriately
strong kappa value of 0.86. Class-wise is also performed best
toward the identification of dense forest (UA = 90.00%,
PA =100.00%), oil palm plantation (UA = 90.00%, PA = 90.00%),
and open grassy area (UA = 80.00%, PA = 100.00%). The results
obtained by k-means are significantly lower, with an OA are
72.00% and a mean of UA with approximately 71.50%. There was
misclassification between oil palm (UA = 66.00%, PA = 62.50%)
and rubber plantation (UA = 64.00%, PA = 66.00%) in the study.
This misclassification was mainly attributed to spectral overlaps
as noted by Othman et al. (2019). MDC generated an OA equal to
61.5%, with UA near about 57.09%, and PA near about 74.74%,
and kappa equal to 0.58, accompanied by high omission errors for
the rubber plantation, where UA equalled only 54.55% and PA
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just reached up to 60.00%. PPC achieved a classification accuracy
of 65.10% based on the OA, with a kappa value of 0.59. How-
ever, the model showed significant omission for certain classes,
particularly rubber plantation, where both the UA and PA
were zero.

By 2010, MLC stayed on top with OA = 91.30%,
UA = 77.33%, PA = 87.83%, and KC = 0.82. It got the perfect
score for open grassy area (UA = 100.00%, PA = 100.00%) and
high marks for rubber plantation (UA = 90.00%, PA = 100.00%).
Method k-means increased to OA = 83.30% (UA = 69.16%,
PA = 73.33%, KC = 0.58) but still had trouble clear of oil palm
(UA = 67.00%, PA = 63.00%) from rubber plantation
(UA = 65.00%, PA = 67.50%). MDC decreased to OA = 47.60%
(UA = 48.33%, PA = 65.56%; KC = 0.43), showing big spectral
errors, mostly between dense and thin woods, while PPC resulted
an OA with approximately fifty-two percent only (UA = 75.00,
PA = 45.00, KC = 0.46). In 2020, even with more land cover
breakup, MLC is still on top of OA = 92.70%, UA = 79.48%,
PA = 81.33% and KC = 0.79. It does very well for rubber
plantation (UA = 70.00%, PA = 100.00%) and sparse forest
(UA = 80.00%, PA = 72.73%). Method k-means gets its best OA at
85.30% (UA = 68.82%, PA = 70.68%, KC = 0.61) but still mixes up
oil palm (UA = 65.00%, PA = 60.50%) and rubber plantation
(UA = 63.5%, PA = 65.0%). MDC gives OA = 48.9%
(UA = 49.38%, PA = 60.83%; KC = 0.44), does very badly for
oil palm (UA = 100.00%, PA = 25.00%). PPC gets OA at 72.60%
(UA = 65.00%, PA = 49.67%, KC = 0.69) but misses out totally on
oil palm plantation (UA = 0.00%; PA = 0.00%).

MLC minimised both commission (high UA) and omission
(high PA) errors across the three-time frames. It worked better
for spectrally similar tropical land cover classes, e.g., oil palm and
rubber plantation. An increasing trend was consistent with
k-means but hampered by some basic problems of unsupervised
clustering, mainly confusion between certain types of vegetation
that are spectrally overlapping, as discussed by Sari et al. (2023).
A method dependent only on simple Euclidean distance is not
appropriate for heterogeneous landscapes, such as MDC; while
spectral boundaries are too rigid leading to severe omission errors
even when purity is quite high for certain classes, such as PPC,
according to Zhang Liu and Biljecki (2023). This finding falls
among recent research advocating hybridisation of the statistical
strength of MLC with contextual and object-based fine-tuning
towards maximising accuracy combined with flexibility under
highly dynamic tropical settings.

VEGETATION COVER DISTRIBUTION
AND CHANGE PATTERNS

Table 3 in the temporal analysis captures major landscape
changes between 2000 and 2020 in Raub District, with explicit
results of human activities. It is an alarming trend under all four
classification methods that dense forest cover is decreasing
concomitant with increasing oil palm plantations and open grassy
areas. Dense forests have recorded reductions across all classifiers.
For instance, k-means results revealed that in 2000 (Fig. 2a), an
estimated area of 115,000 ha was reduced to 84,000 ha by 2020
(Fig. 2c); thus proposing a net loss of about 31,000 ha (27%)
(Fig. 2a—c), MLC records decline from 118,200 ha to 86,100 ha
within the same period (Fig. 3a—c). This pattern reflects much
wider regional trends toward deforestation elsewhere in Southeast

Table 3. Area distribution by vegetation class

Area (ha) in the year
Vegetation class
2000 2010 2020
k-means

Dense forest 115,000 96,000 84,000
Sparse forest 45,000 52,500 48,300
Oil palm plantation 22,000 31,200 41,500
Rubber plantation 25,000 30,100 28,600
Open grassy area 6,500 10,200 15,400

MLC
Dense forest 118,200 98,700 86,100
Sparse forest 42,800 50,300 46,800
Oil palm plantation 21,100 30,700 40,300
Rubber plantation 24,600 28,500 27,000
Open grassy area 5,900 9,800 14,200

MDC
Dense forest 113,500 95,200 83,500
Sparse forest 43,200 51,000 47,200
Oil palm plantation 20,900 30,500 40,200
Rubber plantation 24,400 28,900 27,300
Open grassy area 6,100 9,700 14,600

PPC
Dense forest 114,200 96,300 84,800
Sparse forest 43,500 51,300 47,400
Oil palm plantation 21,200 30,800 40,400
Rubber plantation 24,700 29,000 27,400
Open grassy area 6,000 9,600 14,500

Explanations: MLC = maximum likelihood classification, MDC = min-
imum distance classifier, PPC = parallelepiped classifier.
Source: own study.

Asia as a result of agricultural expansion, in particular oil palm
cultivation, and infrastructure development. The dense forest
decline signifies not only habitat loss but also carbon storage,
hydrological regulation, and biodiversity integrity (Curtis et al.,
2018). Oil palm plantations have been expanding massively
during the two decades; k-means results highlight that they were
only 22,000 ha in 2000 but reached 41,500 ha by 2020 (88.6%
increase) (Fig. 2a-c). MLC has similar growth patterns (21,100—
40,300 ha) (Fig. 3a—c) and MDC (20,900-40,200 ha) (Fig. 4a—c).
Malaysia is a global leader in palm oil production hence such
expansion reflects sustainability issues on greenhouse gas
emissions from peatland draining and threats to biodiversity as
highlighted by Meijaard et al. (2020). The fast pace of replacing
forests with oil palms signals economic resilience taking
precedence over ecological considerations.

Sparse forest area exhibits fluctuating patterns, increasing
from 2000 to 2010 and then decreasing by 2020. For example,
under MDC it was 43,200 ha in 2000 and increased to 51,000 ha
by 2010 and then reduced to 47,200 ha by 2020. This might be
indicative of a forest degradation pathway land cover mosaic
where the sparse forest is first created and then later converted
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into plantations. Such landscapes have been described as being in
an ecologically vulnerable state which is likely to be further
degraded if not managed with restoration interventions (Maxwell
et al., 2020). Open grassy areas about doubled their size under
most classifiers. Under PPC they increased from 6,000 ha in the
year 2000 to 14,500 ha by the year 2020 (Fig. 5a—c). This could be
interpreted to be an increase in the abandonment of lands
that have been degraded probably due to overexploitation or else
cleared for new agricultural use. Though they do deliver some
ecosystem services, grassy areas are much less biodiverse than the
forests they replace and might indicate a wider ecological decline.
Trends match well between classifiers but with small differences
in area estimates that show methodological sensitivities. MLC
always gives slightly higher dense forest areas than k-means
because of its probabilistic pixel classification advantage in

Legend
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- Qil palm
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[ | open area grass

0

9,000 9,000

Fig. 2. The k-means classification results for images: a) 2000, b) 2010,
¢) 2020; source: own study

distinguishing spectrally similar classes. Consistency across
methods actually aids in making such observed patterns; it
suggests that the detected land cover transitions are not some
artefacts of the classification technique but rather genuine land
use/land cover change. At the broadest level, over two decades
Raub’s, changing vegetation type distributions reflect the
replacement of forest-dominated landscapes with agro-industrial
systems. This shift may advance economic development goals but
comes at a considerable ecological cost. They underscore the need
for balanced land use planning, taking into consideration
development and environmental sustainability. They also prove
the valuableness of remote sensing technologies in guiding and
directing decisions regarding land management, particularly in
tropical regions that possess high biodiversity where rapid
transformations of lands are taking place.
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CLASSIFIER STRENGTHS AND LIMITATIONS

Changes in vegetation vigour, which reflect variations in
vegetation cover density and health, are influenced by the spatial
extent and classification of land cover over time. These changes
were derived from comparing classified maps from different
years. Out of the three supervised MLC, MDC, and PPC as well as
k-means clustering used, it has always been MLC that turned out
to be the most accurate for all years. This basically gives an idea
about the fact that as a supervised classification operating in
a probability domain, MLC uses statistically representative
training data to assign each pixel to land cover classes based on
its probability of belonging to certain classes. The probabilistic
approach assumes spectral signatures distribution for every class

b)
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Fig. 3. The maximum likelihood classification (MLC) classification
results for images: a) 2000, b) 2010, c) 2020; source: own study

under normal conditions, something quite realistic in most
applications of remote sensing, and enables detailed differentia-
tion between spectrally similar vegetation types such as oil palm
and rubber plantations or sparse forest and open grassy areas (Li
et al., 2012; Jensen, 2021). For example, linear plantation
boundaries and transitional vegetation zones are delineated with
high precision. Therefore, it becomes very useful in more detailed
agricultural area expansion and forest fragmentation studies. The
ability to model intra-class variability adds up to its good
performance in areas where there is high spectral confusion due
to overlapping canopy structures, or mixed landcovers prevalent
in tropical landscapes (Foody, 2020). However, adequate, high
quality, and representative training data, on which MLC is
dependent, remains a handicap in remote and also cloud-prone
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areas. Any bias present in the training set will be carried into the
classification itself.

The MDC is almost as good as the MLC. Mean values from
reference samples are calculated and the spectrum’s Euclidean
distance for each class is determined. It runs fast and does not
depend much on the assumption of normality (Sharma Banjade,
Rai and Subedi, 2023). This method works well where spectral
means between classes are distinct without much variance within
classes. It will break down if there is spectral overlap between
classes, such as might occur with rubber and oil palm plantations
across a heterogeneous landscape like Raub, for example. Unlike
the MLC, it does not use information on class variance and
covariance; hence, it will be less robust under conditions of mixed
pixels but better than most unsupervised approaches. In Raub,
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Fig. 4. The minimum distance classifier (MDC) classification results for
images: a) 2000, b) 2010, c) 2020; source: own study

PPC’s rigid boundary rules resulted in high omission errors,
particularly for rubber plantations in 2010 and 2020, where
spectral variability within plantation canopies fell outside the
classifier’s thresholds. This explains why PPC reported UA and
PA values of zero for rubber plantations, highlighting its
unsuitability for heterogeneous tropical mosaics (Shiraishi et al.,
2014). Classes that have tightly bounded spectral ranges and
internal variability such as water bodies or bare land will work
well but vegetation classes which typically have high intra-class
variance may be misclassified. It is simple and hence fast but does
not have the statistical strength of MLC nor adaptability of MDC
and hence would rather be used for coarse classification tasks or
perhaps as part of hybrid approaches.
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Method k-means being of an unsupervised nature does not
necessarily need labelled training data. It is a process where
spectrally similar pixels are grouped into classes and then
manually assigned to vegetation classes. Therefore, this algorithm
can be optimally applied for quick surveys or exploratory mapping
tasks and when no ground truth data are available (Jensen, 2021).
But the method is fraught with some problems over heterogeneous
landscapes, such as typically confusing sparse forest with open
grassy areas and difficulty in separating out rubber plantations
from other woody vegetation. This is because its determination
strictly depends on spectral distance metrics, i.e., without
consideration of any contextual or spatial information, leading
to instability within mixed-pixel zones which are exactly the areas
of interest in degradation and regeneration monitoring (Foody,
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Fig. 5. The parallelepiped classifier (PPC) classification results for
images: a) 2000, b) 2010, c) 2020; source: own study

2020). Besides, subjectivity introduced by manual labelling after
clustering may reduce temporal consistency. In comparative
evaluation, the overall ranking of performance in the Raub case
study goes as: MLC > k-means > MDC > PPC. Long-term detailed
monitoring requiring policy relevance prefers MLC due to its
statistical rigor and adaptability when the training data is available;
meanwhile, systems offering a simpler structure with rather high
accuracy in situations where spectral overlap is not so wide are
preferred. Where class boundaries are well defined, PPC can
provide quick classifications that are less useful in cases of
vegetative mapping with complex spectral information. The
unsupervised k-means approach retains some utility in rapid-
resource-limited assessments or even as a preliminary step before
application of more robust supervised methods. Method k-means
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as exploratory analysis, followed by MLC for fine mapping, with
MDC or PPC as possible stopgaps between degrees of data
availability and landscape heterogeneity, will synthesise toward
strong monitoring praxis. This steps the line between best praxis
in tropical forestry monitoring whereby method choice is
subordinated to resource context and desired degree of classifica-
tion accuracy (Edwards et al., 2019; Maxwell et al., 2020).

IMPLICATIONS OF VEGETATION CHANGE

A twenty-year comparison of vegetation change in Raub District
from four classifying methods: MLC, MDC, PC, and k-means
clustering; reflects major ecological transformations that bear
equally great policy consequences. The dominant trend common
to all classifiers is the high magnitude of reduction in dense forest
cover from more than 113,500-118,200 ha in 2000 to only
83,500-86,100 ha by 2020. This reflects general Southeast Asian
trends in deforestation where large tracts of forests are cleared for
oil palm and rubber monocultures (Dhandapani, Yule and
Drewer, 2024; Saharudin, Jeswani and Azapagic, 2024). Tropical
forests are important in the sequestration of carbon, climate
regulation, hydrological balance, and biodiversity conservation.
Removal of these forests leads to habitat fragmentation and
consequently resilience attributed to ecological strength when it
comes to adjustments under climatic conditions. The conversion
increases the aboveground biomass carbon stocks lost which puts
Malaysia as a nation at a disadvantage in fulfilling its interna-
tional commitments related to climate change. These plantations
contain more carbon than open land; however, they can never
carry out the intricate ecological functions fulfilled by a complete
forest. Besides, such monoculture systems are further intensified
by mechanical clearing, chemical input, and hydrological
modification, simplifying habitat structure, hence narrowing
niche diversity and restricting native species persistence.

By 2020, it also noted about a threefold increase of open
grassy areas consistently across classifiers as an indication of
degradation after clearing or conversion failure to productive
plantations. Other such degraded land elsewhere in Malaysia was
found to have low biodiversity value but high risks for erosion
when rainfall is heavy (Sari et al., 2023). While ours is not a soil
process classification, expansion of grassland area detected here in
Raub does indicate increasing susceptibility to land degradation
that will probably have downstream effects on water quality and
local agriculture. From the wider social and economic perspec-
tive, this means that rural livelihoods and export revenues
continue to be sustained by oil palm and rubber plantations
expansion (Ahmad et al., 2024). However, these take place at the
expense of forest-dependent communities alongside long-term
ecological sustainability. This finding also supports further
advocacy for the integrated land-use policy that introduces
agroforestry systems together with a multifunctional landscape
mosaic which contains natural corridors (Saharudin, Jeswani and
Azapagic, 2024; Tiko et al, 2025). Another important lesson
emphasised by this study is that method choices in vegetation
monitoring have considerable effects on its reliability. As MLC
generated results that were systematic and highly accurate, it thus
becomes the most reliable method in providing estimates where
decisions are extremely relevant to policies being developed.
Other methods can complement roles as long as data or resource
constraints exist.

CONCLUSIONS

The study of vegetation cover changes in Raub District, Pahang,

Malaysia, can be divided into:

« selection of classification method: the choice of classification

method is crucial for accurate vegetation cover change detec-

tion;

best method: maximum likelihood classification (MLC) consist-

ently performed best due to its ability to distinguish spectrally

similar classes like oil palm and rubber plantations;

o minimum distance classifier (MDC) and parallelepiped classi-
fier (PPC): MDC performs well when spectral means are well-
separated but poorly when overlaps occur, while PPC is fast but
less accurate in complex vegetation mosaics;

o k-means: k-means is quick and requires minimal data, but it has

high error rates, particularly in open grassy areas;

vegetation trends: all classifiers revealed that dense forests are

being replaced by oil palm, rubber plantations, and expanding

open grassy areas, reflecting broader deforestation and agricul-
tural intensification in Southeast Asia;

« environmental impact: these changes lead to reduced biodiver-

sity, disrupted hydrological systems, lower carbon storage, and

increased land degradation risks;

methodology recommendations: for long-term monitoring,

multi-data classification (MLC) should be the default choice,

with MDC or PPC as fallbacks, and k-means used only for
preliminary assessments;

policy implication: a tiered monitoring framework using these
methods can support evidence-based land-use policies balan-
cing economic development, biodiversity conservation, and cli-
mate resilience.
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