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Highlights 
• Water scarcity drives testing of DI in semi-arid regions. 
• Compared irrigation for plum yield, WUE, fruit quality, and physiological markers. 
• DI cut yield 16% but doubled WUE, boosted stress markers, and lowered costs by 22%. 
• The DI offers sustainable way to balance yield, quality, WUE.  

Abstract: Water scarcity in semi-arid regions demands irrigation strategies that enhance water use efficiency (WUE) 
without compromising crop productivity. This study evaluated ‘Solar Eclipse’ plum (Prunus salicina L.) production 
under two irrigation regimes at El Tahadi Road, Nubaryia, Egypt: control irrigation (CI), supplying 100% of crop 
evapotranspiration (ETc), and regulated deficit irrigation (DI), applying 50% ETc from March to June. Trees under 
CI achieved the highest yield (16,250 kg∙ha–1), favouring markets focused on high-volume production. However, 
DI reduced yield by only 16% (13,650 kg∙ha–1) while significantly improving fruit quality, including higher total soluble 
solids (15.8 °Brix1), phenolic content (45.6 mg GAE∙g–1), and antioxidant capacity (82.6 μmol Trolox∙g–1). The 
DI treatment also nearly doubled WUE and lowered production costs by 22%, enhancing resource efficiency and 
economic sustainability. Biochemical analysis revealed increased leaf levels of proline, abscisic acid, and anthocyanins 
under DI, indicating activation of stress-responsive mechanisms that maintained fruit development despite reduced 

JOURNAL OF WATER AND LAND DEVELOPMENT  
e-ISSN 2083-4535   

Polish Academy of Sciences (PAN)  Institute of Technology and Life Sciences – National Research Institute (ITP – PIB) 

JOURNAL OF WATER AND LAND DEVELOPMENT 
DOI: 10.24425/jwld.2025.155315 
2025, No. 66 (VII–IX): 206–213 

1 1°Brix = 1 g of sucrose in 100 g of solution 

© 2025. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

mailto:if.hassan@nrc.sci.eg
https://orcid.org/0000-0002-0761-7850
mailto:hazem@kalaji.pl
https://orcid.org/0000-0002-3833-4917
mailto:rahaf.ajaj@adu.ac.ae
https://orcid.org/0000-0003-3539-2879
mailto:olfa.zarrouk@irta.cat
https://orcid.org/0000-0002-4115-4781
mailto:habibathar@bzu.edu.pk
https://orcid.org/0000-0002-8733-3865
mailto:amanymira@agr.tanta.edu.eg
https://orcid.org/0000-0002-9720-6173
mailto:ahmed.gameal@agr.tanta.edu.eg
https://orcid.org/0000-0003-2109-0925
mailto:shamel.alameldein@agr.tanta.edu.eg
https://orcid.org/0000-0001-9336-5380
mailto:h.hatterman.valenti@ndsu.edu
https://orcid.org/0000-0001-8416-4800


water availability. Correlation analysis suggested DI enhanced WUE and fruit quality through physiological and 
biochemical adaptations, albeit with a modest yield reduction. Overall, this study emphasised the trade-offs between 
maximising yield and improving fruit quality, positioning regulated deficit irrigation as a viable, sustainable approach 
for ‘Solar eclipse’ plum production in semi-arid regions and provided valuable insights for those seeking to optimise 
WUE while maintaining both economic viability and agronomic performance. 

Keywords: Japanese plum, optimising irrigation, physiological adaptation, sustainable production, water use efficiency 
(WUE) 

INTRODUCTION 

Water scarcity is a growing global concern, especially in arid and 
semi-arid regions where agriculture relies heavily on irrigation. 
The crisis, driven by climate change and population growth, 
highlights the urgency of water conservation in agriculture (FAO, 
2021a; UN, 2025). Egypt, located in a semi-arid to arid zone, faces 
severe water shortages, making water-efficient irrigation essential 
for sustainable farming. 

Plum (Prunus salicina L.) cultivation is important in Egypt 
for its nutritional and economical values. Although plums are 
sensitive to water fluctuations, recent research suggests that 
regulated deficit irrigation (DI), a technique that strategically 
limits water during less sensitive growth stages, can improve fruit 
quality while conserving water (Galindo et al., 2018; Hassan et al., 
2021; Razouk et al., 2021). This aligns with global efforts toward 
climate-smart agriculture. 

Utilising DI optimises water use efficiency (WUE) by 
activating plant stress responses that enhance drought resilience. 
While some yield loss may occur, studies show that DI maintains 
acceptable productivity and enhances fruit quality in peaches, 
nectarines, and plums (Girona et al., 2004; Egea et al., 2010). 
Water stress under DI also promotes beneficial metabolites, 
improving fruit sweetness and nutritional value (Mittler, 2002). 

Key fruit quality traits such as total soluble solids (TSS), 
phenolics, and antioxidant capacity are improved under moderate 
water stress, increasing market value (Giusti and Wrolstad, 2001; 
Chaves, Maroco and Pereira, 2003; Blum, 2011). Despite these 
benefits, DI adoption remains limited, especially in countries like 
Egypt that use traditional irrigation. 

This study evaluates DI’s impact on yield, fruit quality, and 
WUE of ‘Solar eclipse’ plum, a cultivar released by Culdevco and 
known for its flavour and climate adaptability (Culdevco, 2025). 
Conducted over two seasons in an established orchard at El 
Tahadi Road, Nubaryia, the research compares DI to conven-
tional irrigation (CI) and offers recommendations for water- 
efficient plum farming. 

To understand how plum trees respond to water stress, the 
study examined anatomical, physiological, and biochemical traits, 
including proline, abscisic acid (ABA), and anthocyanins, which 
are key indicators of drought tolerance (Bates, Waldren and Teare, 
1973; Giusti and Wrolstad, 2001; Sandhu et al., 2011; Hernandez- 
Santana, Rodriguez-Dominguez and Diaz-Espejo, 2016). 

Relative water content (RWC) and leaf water deficit (LWD) 
are used to assess plant water status. The RWC reflects a leaf’s 
hydration and structural stability (Barrs and Weatherley, 1962), 
while LWD quantifies the extent of water loss, inversely affecting 
RWC (Jones, 2007). These metrics help evaluate how irrigation 
strategies influence water relations in plum trees. 

By exploring trade-offs between yield, WUE, and fruit 
quality, this study supports the adoption of DI for sustainable 
orchard management in arid regions. The findings contribute to 
global efforts in efficient water use and climate-resilient 
agriculture (FAO, 2021b). The aim of this study was to determine 
a deficit irrigation strategy for ‘Solar eclipse’ plum that maximises 
fruit quality while minimising water use in semi-arid climates. 

MATERIALS AND METHODS 

The experimental study was conducted in an established orchard 
at El Tahadi Road, Nubaryia, Egypt (30°43'54" N, 30°33'1" E), 
a reclaimed desert area with predominantly sandy soils and an 
arid region with less than 40 mm annual rainfall and average 
temperatures ranging from 10 to 35°C (EMA, 2025). The soil 
properties at 0–30 cm depth consisted of an 88% sand, 7% silt, 5% 
clay soil texture with a pH of 8.7, 3.4% calcium carbonate 
(CaCO₃) and 211 ppm total dissolved salts (TDS) (Tab. 1). 
Groundwater, pumped from a deep well at an approximate depth 
of 150–200 m, which reflects the actual groundwater table in the 
El Nubaryia region, was used to irrigate high-value ‘Solar eclipse’ 
plum trees to assess irrigation management under water scarcity. 

© 2025. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

Table 1. Soil and water analysis for the plum tree orchard in the 
El Tahadi Road, Nubaryia region of Egypt 

Parameter Value in soil  
(0–30 cm) Value in water 

pH 8.65 7.88 

Sand (%) 88.0 – 

Silt (%) 7.0 – 

Clay (%) 5.0 – 

Total dissolved salts (ppm) 211.2 250 

CaCO3 (%) 3.4 – 

Ca2+ (meq∙(100 g)–1) 1.0 1.0 

Mg2+ (meq∙(100 g)–1) 0.6 0.8 

Na+ (meq∙(100 g)–1) 1.4 1.49 

K+ (meq∙(100 g)–1) 0.1 0.45 

Cl– (meq∙(100 g)–1) 1.8 0.0 

SO4
2– (meq∙(100 g)–1) 0.4 0.8 

CO3
2– (meq∙(100 g)–1) 0 – 

HCO3
– (meq∙(100 g)–1) 0.9 1.0  

Source: own elaboration. 
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The experiment was conducted for two years (2023–2024) 
using five-year-old trees spaced at 4 × 5 m, with the commercial 
cross pollinator “Pioneer” replacing one in every eight ‘Solar 
eclipse’ trees. Standard horticultural practices were followed. 
Irrigation treatments were applied at 100% crop evapotranspira-
tion (ETc) as the conventional irrigation (CI) or 50% ETc as 
regulated deficit irrigation (DI) during fruit development, using 
a randomised complete block design with three replicates of 
10 trees for each. The ETc was estimated using the FAO Penman– 
Monteith model (Smith, Allen and Pereira, 2000), and crop 
coefficient (Kc) values were applied for each phenological stage. 
Weekly adjustments were made based on weather and soil 
moisture (Davie and Zhang, 1991). Drip irrigation with pressure- 
compensating emitters and tensiometers at 15, 30 and 45 cm 
depths ensured precision (Chaves, Maroco and Pereira, 2003). 

Baseline soil and water analyses were conducted (Blum, 
2011), and meteorological data were collected via an on-site 
weather station (Tab. 1). Yield per tree was recorded and 
expressed per ha. Agronomic water use efficiency (WUE) was 
calculated as yield per m3 of irrigation water and computed based 
on the total volume of irrigation water applied, which was 
determined using the FAO Penman–Monteith approach and local 
meteorological data (Smith, Allen and Pereira, 2000; Farooq et al., 
2009). The applied water volumes for each treatment were CI, 
100% ETc ~26,800 m3∙ha–1 and DI, 50% ETc during fruit 
development ~13,400 m3∙ha–1. The formula used for WUE (in 
kg∙m–3) was: 

WUE ¼
Y

I
ð1Þ

where: Y = total fruit yield (kg∙ha-1), I = irrigation water applied 
(m3∙ha-1). 

For quality assessment, 20 fruits per tree were analysed. 
Total soluble solids (TSS) were measured with a digital 
refractometer (ATAGO PAL-1, Tokyo, Japan), while phenolics 
were quantified using the Folin–Ciocalteu method with mod-
ifications (Singleton, Orthofer and Lamuela-Raventós, 1999) and 
expressed as mg of gallic acid equivalents (GAE) per g of sample 
(mg GAE∙g fresh mass–1). Antioxidant capacity was assessed via 
the DPPH (1, 1-diphenyl-2-picrylhydrazyl) method (Brand- 
Williams, Cuvelier and Berset, 1995) and expressed as µmol 
Trolox per g of fresh mass (μmol Trolox∙g–1). Leaf proline was 
measured following Bates, Waldren and Teare (1973), and 
abscisic acid (ABA) concentrations were determined using 
enzyme-linked immunosorbent assay (ELISA) after methanol 
extraction with antioxidants (Walker-Simmons, 1987). 

Anthocyanin content was measured using the pH differ-
ential method (Giusti and Wrolstad, 2001), with absorbance 
readings at 520 and 700 nm, and results expressed as cyanidin-3- 
glucoside equivalents. Lipid peroxidation was assessed via 
malondialdehyde (MDA) content using the thiobarbituric acid 
method, with absorbance at 532 and 600 nm (Heath and Packer, 
1968). Relative water content (RWC) was calculated as: 

RWC %ð Þ ¼
FM � DM

TM � DM
� 100 ð2Þ

Fresh mass (FM), turgid mass (TM), and dry mass (DM) were 
determined by weighing leaves immediately after sampling, after 

24 h in distilled water at 4°C, and after oven-drying, respectively. 
Leaf water deficit (LWD), a complementary measure to RWC, was 
calculated as: 

LWD %ð Þ ¼
TM � FM

TM � DM
� 100 ð3Þ

Data were tested for normality (Shapiro–Wilk) and homogeneity 
of variance (Levene’s test). As no seasonal differences were found, 
data from both years were pooled. Treatment effects were 
analysed using analysis of variance (ANOVA) (SPSS v25, IBM), 
with post hoc Tukey’s honest significant difference (HSD) tests 
applied at a 5% significance level. 

RESULTS AND DISCUSSION 

YIELD AND WATER USE EFFICIENCY 

Averaged over the 2023 and 2024 seasons, significant differences 
were observed between the conventional irrigation (CI) and 
deficit irrigation (DI) treatments (Fig. 1). The CI trees 
consistently produced the highest yields, while DI trees yielded 
16% less, emphasising the importance of adequate water supply 
for optimal fruit production as found by Chaves, Maroco and 
Pereira (2003), Blum (2011), Razouk et al. (2021) and Hamdani 
et al. (2022). Full irrigation supports essential physiological 
processes such as photosynthesis and nutrient uptake, ensuring 

Fig. 1. Effect of irrigation regimes of ‘Solar eclipse’ plum on averaged over 
both seasons at El Tahadi Road, Nubaryia, Egypt: a) fruit yield, b) water 
use efficiency (WUE); capital letters indicate significant differences 
between means for each parameter (P ≤ 0.05, Tukey’s HSD); source: 
own study 
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maximal yield (Zhang and Davies, 1990; Smith, Allen and Pereira, 
2000; Temnani et al., 2023). 

In contrast, DI significantly enhanced WUE, averaging 
1.02 ±0.04 kg∙m–3, 67% higher than the CI trees, which 
emphasises its potential for sustainable water management in 
arid regions like El Tahadi Road, Nubaryia. This improvement is 
attributed to physiological adaptations, particularly ABA- 
mediated stomatal regulation that reduces transpiration and 
sustains carbon assimilation, which was concluded also by Zhang 
and Davies (1990). Similar WUE gains without major yield 
penalties have been reported in peaches, nectarines, and almonds 
(Girona et al., 2004; Egea et al., 2010; Razouk et al., 2021). 
Integrating DI with precision technologies could further enhance 
its efficiency and applicability in water-limited environments. 

FRUIT QUALITY PARAMETERS 

Trees under DI had several fruit quality parameters improved 
compared to CI trees (Fig. 2). Fruit from DI trees had 17% higher 
TSS, indicating enhanced sweetness. Fruit phenolic content and 
antioxidant capacity also increased significantly under DI, 
averaging 45.6 ±1.2 mg GAE∙g–1 and 82.6 ±1.7 μmol Trolox∙g–1, 
respectively, compared to 38.9 ±0.9 mg GAE∙g–1 and 74.3 
±1.5 μmol Trolox∙g–1 under CI (P < 0.05). 

These improvements reflect physiological and biochemical 
responses to water stress, such as sugar concentration during fruit 
ripening and activation of secondary metabolism as seen in the 
results from Girona et al. (2004) and Hassan et al. (2025). 
Elevated fruit phenolics and antioxidant capacity under DI are 
linked to enhanced reactive oxygen species (ROS) scavenging 
activity, driven by increased synthesis of phenolics and antho-
cyanins (Giusti and Wrolstad, 2001; Mittler, 2002; Jin et al., 2022). 

In addition to their health benefits, anthocyanins improved the 
fruit pigmentation and visual appeal, which are key traits for 
consumer acceptance and market value. These findings support 
DI as a viable strategy to boost both the nutritional quality and 
market competitiveness of fruit in arid environments (Nasrabadi, 
Ramezanian and Valero, 2024). 

BIOCHEMICAL MARKERS 

Trees under water stress from DI during fruit development 
showed consistently elevated biochemical markers compared to 
trees under CI across both seasons (Fig. 3). Leaf proline and ABA 
levels increased by 80 and 72%, respectively, under DI, while 
anthocyanin content rose by 29%. Leaf MDA, an oxidative stress 
indicator, was 24% higher under DI, reflecting moderate stress. 

The increase in proline under DI highlights its role in 
osmotic adjustment, helping maintain cell turgor and protect 
cellular structures under drought as reported by Bates, Waldren 
and Teare (1973). Elevated ABA levels reflect enhanced drought 
signalling, promoting stomatal closure and water conservation 
(Davies and Zhang, 1991). The moderate rise in MDA indicates 
that oxidative stress was present but effectively managed by 
antioxidant defences, including higher phenolic and anthocyanin 
synthesis (Mittler, 2002). These adaptive responses support DI as 
a resource-efficient alternative to CI, particularly in water-limited 
regions, consistent with prior findings in stone fruits (Ruiz- 
Sánchez, Domingo and Torrecillas, 2010; Alcobendas, Mirás- 
Avalos and Nicolás, 2013). 

PHYSIOLOGICAL MARKERS 

Water stress from DI during fruit development significantly 
affected physiological markers, with 16% higher RWC for trees 
under CI than DI (Fig. 4). This reflects better hydration and 
optimal physiological function under CI, due to consistent water 
availability as reported by José et al. (2013) and Hajlaoui et al. 
(2022). Conversely, lower RWC under DI indicates reduced water 
uptake and increased transpiration, though moderate levels 
suggest osmotic adjustment via compatible solutes like proline 
(Bates, Waldren and Teare, 1973; Egea et al., 2010). 

Fig. 2. Impact of irrigation regimes on fruit quality parameters of ‘Solar 
Eclipse’ plum, averaged over both seasons at El Tahadi Road, Nubaryia, 
Egypt: a) total soluble solids (TSS), b) phenolic content, c) antioxidant 
capacity; capital letters indicate significant differences between means for 
each parameter (P ≤ 0.05, Tukey’s HSD); source: own study 
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The LWD was nearly doubled for trees under DI (25.0%) 
compared to CI (12.8%), highlighting the plant’s reduced ability 
to retain water and increased stress (Blum, 2011). The elevated 
LWD suggests lower turgor pressure and limited leaf expansion, 
which would impair photosynthesis and growth. 

Despite the increased stress, DI remains economically and 
environmentally advantageous in water-limited regions, offering 
reduced input costs and enhanced fruit quality for high-value 
markets. Integrating DI with advanced monitoring technologies, 
such as remote sensing and real-time soil moisture tracking, 
should optimise its application and scalability as reported by 
Blum (2011), Hassan et al. (2022), and Elmenofy et al. (2023). 

PARAMETER CORRELATIONS CHART 

Biochemical stress markers, particularly proline, ABA, and 
anthocyanins, were highly interrelated (r > 0.90), indicating 
a coordinated response to water deficit (Fig. 5). Deluc et al. (2009) 
also showed that in ‘Cabernet sauvignon’ grapes, a water deficit 
significantly elevated ABA, proline, sugar, and anthocyanin 
concentrations and that the correlations among these biochemical 
markers were highly significant. The MDA content displayed 
moderate positive correlations with WUE (r = 0.58) and TSS 
(r = 0.61), which suggested that oxidative stress occurred, but was 
effectively managed by elevated antioxidant activity (Sandhu 

Fig. 3. Impact of irrigation regimes for ‘Solar eclipse’ plum averaged over both seasons at El Tahadi Road, Nubaryia, Egypt, on tree physiological and 
biochemical responses of: a) proline, b) abscisic acid (ABA), c) anthocyanins, d) malondialdehyde (MDA); capital letters indicate significant differences 
between means for each parameter (P ≤ 0.05, Tukey’s HSD); source: own study 

Fig. 4. Impact of irrigation regimes of ‘Solar eclipse’ plum averaged over both seasons at El Tahadi Road, Nubaryia on: a) relative water content (RWC), 
b) leaf water deficit; capital letters indicate significant differences between means for each parameter (P ≤ 0.05, Tukey’s HSD); source: own study 
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et al., 2011; Mihaljević et al., 2021). The correlation chart also 
showed that RWC correlated strongly and positively with yield 
but negatively with WUE (r = –0.93), which highlighted the trade- 
off between maintaining hydration and improving water-use 
efficiency. In contrast, LWD exhibited strong positive associations 
with WUE (r = 0.95) and ABA (r = 0.94), reinforcing its role as 
a reliable stress indicator (Wijewardana et al., 2019). Enhanced 
WUE and fruit quality under DI were closely linked to 
biochemical and hormonal signalling, reinforcing the need for 
regulated deficit irrigation as a climate-smart strategy when 
optimising water use without compromising economic returns. 
Enhanced WUE and fruit quality under DI were closely linked to 
biochemical and hormonal signalling, reinforcing the need for 
regulated deficit irrigation as a climate-smart strategy when 
optimising water use without compromising economic returns. 

CONCLUSIONS 

This study demonstrated the complex effects of irrigation regimes 
on the agronomic, physiological, and biochemical parameters of 
five-year-old ‘Solar eclipse’ plum trees under semi-arid condi-
tions. While trees under CI maximised yield and were 16% higher 
compared to the yield from trees under DI, the trees under CI had 
a significantly lower WUE of 40% when compared to trees under 
DI. Trees receiving the DI had increased fruit quality parameters 

of TSS, phenolics and antioxidant capacity by 17%, 17% and 11%, 
respectively. Trees that received DI also had higher stress-related 
physiological responses compared to control trees with 80% 
greater proline concentration, 72% greater ABA concentration 
and 29% greater anthocyanin content. The RWC was 16% higher 
for trees under CI compared to DI, while the LWD was nearly 
doubled for trees under DI (25.0%) compared to CI (12.8%). The 
correlation analysis shows the complex interplay between 
physiological, biochemical, and yield-related parameters under 
contrasting irrigation regimes. A strong negative correlation 
between yield and key biochemical stress indicators, including 
ABA, proline, anthocyanins, and antioxidant capacity, emphasises 
the physiological cost of enhanced stress adaptation under DI. 
While DI reduced overall yield, it significantly improved WUE, 
fruit quality attributes (TSS, phenolics, antioxidants), and stress- 
responsive metabolites, suggesting a shift in plant resource 
allocation towards survival and quality rather than biomass 
production. 

Conversely, yield was positively associated with RWC, 
reinforcing the importance of tissue hydration under full irri-
gation for maximising productivity. Strong positive correlations 
among WUE and ABA, proline, and secondary metabolites 
confirm the biochemical and hormonal adjustments associated 
with improved water productivity under DI. The observed 
interrelationships among biochemical markers further emphasise 
a tightly coordinated stress response network. 

Fig. 5. Correlation heatmap demonstrating relationships among yield, water use efficiency (WUE), fruit quality traits 
(total soluble solids (TSS), phenolics, antioxidant capacity), biochemical parameters (proline, abscisic acid (ABA), 
anthocyanins, and malondialdehyde (MDA)) and physiological parameters (relative water content (RWC) and leaf 
water deficit (LWD)) of ‘Solar eclipse’ plum under control irrigation (CI) and regulated deficit irrigation (DI); 
positive correlations are indicated in red, negative correlations in blue, with colour intensity proportional to the 
correlation coefficient (r); source: own study 

A deficit irrigation strategy for ‘Solar eclipse’ plum in semi-arid climates 211 

© 2025. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 



Collectively, these findings suggest that DI promotes 
physiological and biochemical mechanisms that enhance water 
efficiency and fruit quality at the expense of yield. Such trade-offs 
should be strategically considered in crop management, especially 
under increasing water scarcity, to optimise both resource use and 
crop value in water-limited environments. These findings also 
support DI as a sustainable strategy for balancing yield, quality, 
and resource use. Integrating DI with precision agriculture could 
further enhance its effectiveness, promoting climate-resilient 
plum production in semi-arid regions. 

ABBREVIATIONS 

ABA   =   abscisic acid 
CI  = traditional control irrigation 
DI  = regulated deficit irrigation 
DM  = dry mass 
ELISA  =  enzyme-linked immunosorbent assay 
ETc  =  crop’s evapotranspiration 
ETo  =  reference evapotranspiration (mm) 
FM  =  fresh mass 
GAE  =  gallic acid equivalents 
Kc  =  crop coefficient 
LWD  =  leaf water deficit 
MDA  =  malondialdehyde 
ROS  =  reactive oxygen species 
RWC  =  relative water content 
TSS  =  total soluble solids 
TM  =  total mass 
WUE  =  water use efficiency 
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