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Abstract: Based on data from the National Disaster Management Agency, South Sumatra is one of the provinces with 
a reasonably large drought-affected area, totalling 8,853,691.009 ha. Drought is a hydrometeorological disaster, 
characterised by anomalous rainfall below normal levels. Reduced rainfall can lead to decreased soil moisture, reduced 
river flows, and a general scarcity of water, which limits availability of water both on the surface and in the soil. To 
anticipate and mitigate the impacts of drought, an accurate forecasting system is essential for effective disaster 
management and mitigation. This research focuses on forecasting drought using the standardised precipitation index 
(SPI) based on Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) algorithms. It compares LSTM 
and MLP algorithms by integrating rainfall data from the FY-4A satellite and observational rain gauges, which are 
processed to generate SPI values. These data are employed to train and test MLP and LSTM models in predicting future 
drought conditions. The results indicate that drought can be effectively predicted using both MLP and LSTM. However, 
the MLP outperforms the LSTM, as reflected by a higher Nash–Sutcliffe efficiency (NSE) value, a lower error rate, and 
a predicted date trend that more closely aligns with actual observations.  

Keywords: drought, forecasting, FY-4A satellite, long short-term memory (LSTM), multilayer perceptron (MLP), 
rainfall 

INTRODUCTION 

Climate change has resulted in several hydrometeorological 
disasters worldwide, such as floods, landslides, and droughts 
(Legionosuko et al., 2019). It is expected to increase the 
frequency, intensity, and duration of drought events (Peterson 
et al., 2014). Drought is a hydrometeorological disaster charac-
terised by anomalously low rainfall below normal levels (Hartanto 
et al., 2023; Yulizar et al., 2024). Reduced rainfall can lead to 
declining soil moisture, reduced river flows, and a general scarcity 

of water, which limits its availability both on the surface and in 
the soil (Saidah et al., 2019). 

The consequences of drought have significantly increased in 
both developed and developing countries. While agriculture is the 
first and most severely affected industry, other industries also face 
significant disadvantages. These include energy sector, public, 
tourism, transportation, urban water supply, and the environ-
ment (Wilhite, Sivakumar and Pulwarty, 2014). 

Indonesia is heavily dependent on agricultural and planta-
tion products. The extensive impacts of drought on rural areas 
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include irrigation water shortages, limited cultivation areas, 
reduced land productivity, decreased crop yields, and lower 
farmer incomes. Based on data from the National Disaster 
Management Agency (Ind.: Badan Nasional Penanggulangan 
Bencana – BNPB), South Sumatra is one of the provinces with 
a relatively large drought-affected area, totalling 8,853,691.009 ha. 
Drought conditions can also increase the risk of forest and land 
fires. To anticipate and reduce the impacts of drought, an 
accurate forecasting system is essential for effective disaster 
mitigation and management. 

The World Meteorological Organization (WMO), a United 
Nations agency responsible for meteorology, states that drought 
can be monitored and classified using the standardised precip-
itation index (SPI) (WMO, 2021). The SPI is a simple, robust, 
easy-to-understand indicator that is independent of climatic 
factors. It was created by McKee et al. in 1993 and 1995 to more 
accurately represent a region’s wetness and dryness (Guttman, 
1999). The SPI is widely used for analysing, measuring, and 
monitoring drought levels based on rainfall data (Xu et al., 2020). 
It enables early identification, monitoring, and modelling of 
drought by accounting for spatial and temporal distribution of 
rainfall across multiple time scales (Prabowo et al., 2024). 

Previous research by Ali et al. (2017) used the MLP–ANN 
algorithm to predict drought in the Pakistan region for the period 
1975–2012. In this study, MLP–ANN was able to estimate the 
index and capture variations in the one-month time-scale 
drought index (Ali et al., 2017). Drought forecasting using the 
SPI at a 3-month time scale was conducted by Mohammed Salisiu 
and Shabri, (2020) for the region of Iran. The data used in their 
research consisted of observational records covering the period of 
1980–2014. The methods used included Adaptive Neuro-Fuzzy 
Interface System (ANFIS), Multilayer Perceptron (MLP), Radial 
Basis Function Neural Network (RBFNN), and Support Vector 
Machine (SVM). Among these, the, ANFIS model yielded the best 
accuracy, achieving the lowest root mean squared error (RMSE) 
of 1.16 and the lowest mean absolute error (MAE) of 1.10. 

Drought forecasting research was also conducted by 
Bouaziz, Medhioub and Csaplovisc (2021). This study focused 
exclusively on annual drought forecasting using SPI-12, based on 
Extreme Learning Machine (ELM). The data used consisted of 
rainfall records from the CHIRPS satellite for the Sfax region, 
Tunisia, from 1981 to 2019. The study developed a machine 
learning model that uses remote rainfall data and standard 
rainfall indices to monitor and forecast drought events. In 
a separate study, Çoşkun and Citakoglu (2023) compared the 
performance of LSTM and the EML algorithms. The LSTM model 
produced the best evaluation results, with MAE of 0.11 and R2 of 
0.97 (Coşkun and Citakoglu, 2023). 

Research on drought disaster forecasting using the SPI has 
been widely conducted. These studies used time series data from 
several previous years, with rainfall serving as the primary input 
parameter. However, artificial neural network-based models for 
drought prediction are still not widely used in Indonesia. Most 
drought models in Indonesia still use conventional statistical 
methods. The SPI values produced by the Climate Early Warning 
System (CEWS) in Indonesia are based on statistical data 
processing. Although previous research has used machine 
learning methods for drought modelling, few have utilised the 
LSTM and MLP algorithms, especially in in the context of SPI- 
based drought forecasting in Indonesia. This study aims to 

develop a neural network algorithm to predict drought events 
based on SPI values derived from ground observations and 
satellite data. 

MATERIALS AND METHODS 

MATERIALS STUDY 

This research focuses on the South Sumatra Province of 
Indonesia, which has an area of 91,592.43 km2 and is located 
between latitudes 1.00°S–4.75°S and longitudes 102.00°E– 
106.00°E. Based on data from the National Disaster Management 
Agency, South Sumatra is one of the provinces with a relatively 
large drought-affected area, totalling 8,853,691.009 ha. This study 
uses monthly total rainfall data for the 2019–2022 period. The 
date have been sourced from QPE FY-4A satellite data and 
corrected using data from five rain gauges. Rain gauges provide 
daily total rainfall data for the same period, which are then 
resampled into monthly data to align with QPE FY-4A satellite 
data. The study area, along with the distribution of rainfall 
measurement stations in the South Sumatra, is presented as a case 
study on the map (Fig. 1). The study area is divided into five 
technology grids, according to rain gauge locations. 

In this research, rainfall estimates from FY-4A will be 
assessed for accuracy against the monthly rainfall data from rain 
gauges. The comparison will produce a bias correction to improve 
the accuracy of the FY-4A rainfall estimates (Hartanto et al., 
2024). The corrected FY-4A rainfall data with then be used as 
input for drought estimation in the South Sumatra region using 
LSTM and MLP algorithms. Locations of rain gauges can be seen 
in Table 1. 

Fengyun-4A (FY-4A) is an advanced geosynchronous 
radiation imager (AGRI) satellite developed by China. One of 
FY-4A products is Quantitative Precipitation Estimation (QPE), 
which provides data with temporal resolutions of 1, 3, 6 and 
24 h (Song et al., 2024). The FY-4A QPE estimates precipitation 
by deriving transfer characteristic parameters from infrared 
brightness temperature, using probability density matching with 
real-time rolling updates (Song et al., 2024). The spatial resolution 
of FY-4A QPE product is 4 km (Yin, Baik and Park, 2022). The 
FY-4A has 14 channels, comprising visible light, near-infrared, 
shortwave, mid-wave, water vapour, and longwave infrared 
spectra (Ren et al., 2021). 

Data obtained from FY-4A can be used for forecasting 
drought based on the SPI. The FY-4A satellite provides high- 
resolution QPE data, which can be integrated with other 
meteorological data to monitor and predict drought conditions 
(Luo et al., 2023). The high temporal and spatial resolution of 
FY-4A data make it suitable for drought forecasting and 
monitoring (Ren et al., 2021). 

Based on research by McKee, Doesken and Kleist (1995) and 
Khan et al. (2020), the SPI is a drought index derived from long- 
term precipitation data. The SPI is widely used due to its 
robustness, flexibility, and ease of calculation. It enables early 
identification, monitoring, and modelling of drought by account-
ing for the spatial and temporal distribution of rainfall over 
multiple time scales. 

The precipitation data conforms the Gamma distribution, 
which is then adjusted to a normal distribution. The Gamma 
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distribution us well-suited for representing sequential rainfall 
data over time periods (Zhang et al., 2020). The Gamma 
distribution probability function is calculated as follows: 

g xð Þ ¼
1

��� �ð Þ
x�� 1e� x=� ð1Þ

where: α = total rainfall, β = shape variables, x = Gamma 
function. 

The parameters α and β need to be estimated to model the 
Gamma distribution probability function (Jalalkamali, Moradi 
and Moradi, 2015). According to Khan, Muhammad and El- 
Shafie (2020), McKee, Doesken, and Kleist, these two parameters 
can be approximated using Thom’s equation: 
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1
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The parameter α is calculated using the variable A, derived 
from the natural logarithm of rainfall data. This parameter is then 
used to calculate β by dividing the mean rainfall by α. After 
approximating β and α, the function g(x) is integrated over x to 
yield the cumulative probability function G(x). This step is 
explained as follows: 

GðxÞ ¼
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0

gðxÞ dx ¼
1
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If rain does not happen, then the G(x) equation needs to be 
adjusted. If q is the probability of dry day, then the cumulative 
probability function equation is stated as: 

H xð Þ ¼ q þ 1 � qð ÞG xð Þ ð4Þ

The function H(x) is then converted into a standard normal 
distribution. H(x) is utilised to calculate the t value under two 
conditions, which yields the SPI value. The SPI equation is 
calculated as follows: 

SPI ¼ � t �
c0 þ c1tþ c2t

2

1þ d1tþ d2t2 þ d3t3

� �

; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2

s

;

0 < H xð Þ < 0:5 ð5Þ

SPI ¼ t �
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; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

1 � H xð Þ½ �
2

s

;

0:5 < H xð Þ < 1 ð6Þ

where: c = coefficient of nominator and d = coefficient of 
denominator; both have certain specific values: c0 = 2.515517, 
c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and 

Fig. 1. Distribution of rain gauge in this study; source: own elaboration 

Table 1. Rain gauge locations used in this study 

Grid Site instrument Elevation 
(m) 

Coordinates 

latitude 
(S) 

longitude 
(E) 

1 Bayung Lencir 15 2.063 103.679 

2 Karang Dapo 58 2.733 103.034 

3 Pasma Air Keruh 22 3.851 102.761 

4 Sipatuhu 720 4.767 103.972 

5 Lempuing Induk 167 3.895 104.884  

Source: own study. 
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d3 = 0.001308. This index is quite compatible to seasonal zone 
variations and defines rainfall deficits compendiously. The WMO 
also uses SPI as a drought monitoring tool (Mohammed Salisu 
and Shabri, 2020). 

The classification of SPI index as a drought type is shown in 
Table 2. 

Using SPI, drought is forecasted in 1 month (SPI1), 
3 months (SPI3), 6 months (SPI6) and 12 months (SPI12). In 
this research, we focused using SPI3 (3 months) for forecasting 
drought because SPI3 is capable of monitoring drought (Xu et al., 
2020). 

STUDY METHODS 

This research aims to design an early warning model for drought 
in South Sumatra Province using SPI3, based on machine 
learning algorithms. The algorithms include Long Short-Term 
Memory (LSTM) and Multilayer Perceptron (MLP). The overall 
research framework is presented in Figure 2. 

Based on Figure 2, the research steps include a litera- 
ture study, rainfall dataset collection, dataset pre-processing, 
SPI3-based drought forecasting model design, and model 
evaluation. The literature study involved reviewing previous 
relevant research. It examined the theoretical basis of drought, 
data mining, SPI, rainfall, satellites, and machine learning 
algorithms. Rainfall data were collected by downloading satellite 
rainfall data and observational rain gauge data. FY-4A QPE 
satellite data were downloaded from the website http://fyearth. 
nsmc.org.cn/, while observational rain gauge data were obtained 
from the BMKGSoft page (https://bmkgsoft.bmkg.go.id/Met-
View/#default). 

Dataset pre-processing was done by preparing FY-4A 
satellite data and observational rain gauge data to generate 
processed SPI data. The pre-processing includes resampling the 
observational rainfall data into monthly intervals, performing 
a range check to validate the rainfall data, calculating SPI values 
from the rainfall data, and transforming and segmenting SPI data 
into training and prediction model testing data (Akbar et al., 
2024). 

Table 2. Classification of standardised precipitation index (SPI) 

SPI index Drought type 

≥2.0 extremely wet 

1.5 ≤ SPI ≤ 1.99 very wet 

1.0 ≤ SPI ≤ 1.49 moderately wet 

–0.99 ≤ SPI ≤ 0.99 near normal 

–1.49 ≤ SPI ≤ –1.0 moderately dry 

–1.99 ≤ SPI ≤ –1.5 severely dry 

≤–2.0 extremely dry  

Source: WMO (2012). 

Fig. 2. Flowchart system in this study; SPI3 = standardised precipitation index using 3 months, MLP = multilayer perceptron, LSTM = long 
short-term memory; source: own elaboration 
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The corrected FY-4A data were converted into SPI3 values 
for the 2019–2022 period. For model development, 80% of the 
data were used as training data and 20% as testing data. The input 
data consisted of historical SPI3 values. It comprises previous 
historical data at SPI3(t – 1), SPI3(t – 2) and SPI3(t – 3). These 
inputs will predict current SPI3(t) as the output data. 

The algorithm design involves compiling machine learning 
models and hyperparameters. The algorithm parameters include 
weight and bias values obtained through the training process, 
while the hyperparameters consist of the number of neurons 
and number of hidden layers (Tab. 3). The SPI parameters 
drought forecasting model is based on LSTM and MLP 
algorithms. These two algorithms operate separately to evaluate 
accuracy of model. 

PARAMETER EVALUATION 

The accuracy evaluation is conducted using testing data from the 
prediction model. The predicted SPI values are compared to the 
actual SPI data according to the Nash–Sutcliffe efficiency (NSE), 
root mean squared error (RMSE) and mean average percentage 
error (MAPE). The NSE is ratio of mean square error (MSE) and 
variance that indicates closeness of relationship between 
reference data and forecasting data (Ding et al., 2022). This 
parameter is commonly used in hydrology and drought index 
forecasting (Alawsi et al., 2022). The NSE ranges from −∞ to 1, 
with an NSE value of 1 indicating a perfect match between the 
model output and the observed data. The NSE equation is 
expressed as follows: 

NSE ¼ 1 �

Pn
i¼1 yi � ŷ1ð Þ

2

Pn
i¼1 yi � �yð Þ

2
ð7Þ

where: n = total data, i = data index, �y = mean of actual data, 
yi = actual data, ŷ1 = predicted data. 

Root mean squared error (RMSE) expresses error value 
of SPI forecasting model. The RMSE range has the same units 
as the SPI parameters. The RMSE equation is expressed as 
follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

yi � byið Þ
2

s

ð8Þ

The mean average percentage error (MAPE) expresses an 
error value of the SPI forecasting model. The percentage error 
scale is 0–100%. The MAPE equation is expressed as follows: 

MAPE ¼
100%

m

Xm

i¼1

byi � yi

yi

�
�
�
�

�
�
�
� ð9Þ

RESULTS AND DISCUSSION 

PRE-PROCESSING RESULTS CORRECTED FY-4A DATA 

Pre-processing was applied to the FY-4A total rainfall data to 
obtain correction values by comparing them with direct measure-
ments from observational rain gauges. Monthly rainfall data from 
FY-4A for the period 2019–2022 was corrected using correspond-
ing monthly data from the rain gauges. This process results in 
a bias factor for each FY-4A grid, which was then utilised to 
correct FY-4A rainfall data. Furthermore, the corrected data were 
evaluated against initial data using correlation coefficient and 
RMSE parameters. The results of the pre-processing of the FY-4A 
monthly rainfall data are presented in Table 4. 

Based on Table 4, the bias factor values for each grid vary 
considerably. Applying a bias correction is necessary to improve 
the spatial accuracy of rainfall measurements from FY-4A (Ouatiki, 
Boudhar and Chehbouni, 2023). Satellite-based rainfall measure-
ments are biased due to factors such as sensor correction errors, 
evaporation, and wind speed circulation (Wang et al., 2023). The 
results of the statistical analysis indicate that rainfall estimates from 
FY-4A show a moderate correlation with observational rainfall 
gauges readings and a significant decrease in RMSE. 

Figure 3 shows the plotting of observational rainfall gauge 
values, satellite rainfall data, and corrected rainfall data. The 
application of the bias factor improves the accuracy of the FY-4A 
rainfall data, as evidenced by the decrease in the RMSE values on 
each grid when compared to the observational rainfall gauge data. 
The corrected FY-4A rainfall data closely align with the 
observational measurements. The increased accuracy supports 
the use of the corrected FY-4A rainfall data as input for SPI3- 
based drought prediction. 

Table 3. Multilayer perceptron (MLP) and long short-term 
memory (LSTM) hyperparameter model used in this study 

Model Type of 
hyperparameter Value of hyperparameter 

MLP 

hidden layer {1} 

neuron {1–100} 

alpha {0.0001, 0.001, 0.01, 0.1, 1} 

activation {‘relu’, ‘identity’} 

solver ‘lbfgs’, ‘sgd’, ‘adam’ 

max iteration 100 

LSTM 

hidden layer {1, 2} 

neuron {30, 35, 40, 45, 50} 

activation {‘sigmoid’, ‘tanh’, ‘relu’} 

epoch {1000}  

Source: own elaboration. 

Table 4. Corrected monthly rainfall data of Fengyun-4A satellite 
data 

Grid Bias 
factor 

Corre- 
lation 

Root mean squared 
error (mm) Decrease 

(%) unadjust 
bias adjust bias 

1 1.13 0.67 187.14 109.40 41.54 

2 2.05 0.68 164.80 63.52 61.46 

3 0.91 0.60 220.36 139.61 36.46 

4 2.12 0.69 185.67 125.85 32.22 

5 1.06 0.65 185.83 104.89 43.56  

Source: own study 
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EVALUATION OF DROUGHT FORECASTING  
USING STANDARDISED 3-MONTHS PRECIPITATION INDEX 

Drought prediction refers to the numerical forecasting of the 
drought index using Multilayer Perceptron (MLP) and Long 
Short-Term Memory (LSTM). This research focuses on predict-
ing the SPI3 drought index for the three-month lead time. SPI3 
information helps provide medium-term warnings regarding 
reduced water discharge in wells or other water sources (Li et al., 
2023). The SPI3 prediction results from each algorithm are 
evaluated against SPI3 data using the NSE, RMSE, and MAPE 

evaluation parameters. The accuracy of SPI3 predictions using 
Multiple Linear Regression (MLR), Support Vector Regression 
(SVR), MLP, and LSTM is presented in Table 5. 

According to Table 5, the NSE values are positive across all 
models. This indicates a strong relationship between predicted 
and actual SPI3 data. A positive NSE value indicates that the 
variance of the prediction model is relevant to actual data. 
Applying MLP model as a drought predictor produces better NSE 
values than LSTM. The RMSE value <1 reduces the possibility of 
misclassification of drought information because the range of 
transition from wet to dry conditions is −1 to 1. The RMSE and 

 

Bayung Lencir rain gauge 
Satellite data 
Corrected satellite data 

Karang Dapo rain gauge 
Satellite data 
Corrected satellite data 

 

 

Lempuing Induk rain gauge 
Satellite data 
Corrected satellite data 

Pasma Air Keruh rain gauge 
Satellite data 
Corrected satellite data 

Sipatahu rain gauge 
Satellite data 
Corrected satellite data 

Fig. 3. Monthly rainfall (mm) correction of Fengyun-4A satellite data; 
source: own study 
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MAPE values further show that the error produced by the LSTM 
model is higher than that of the MLP. This shows that MLP 
predictor performance is better than that of the LSTM in pre-
dicting drought in the South Sumatra region. The regression-based 
algorithm achieved a high NSE value, demonstrating performance 
that was nearly comparable to that of the MLP. However, the 
lowest RMSE and MAPE values were consistently achieved using 
the MLP during the testing process. This proves that the MLP 
algorithm provides the best performance in predicting SPI3 
compared to statistical regression methods. Grid 4 produced the 
lowest NSE values and the highest RMSE and MAPE, likely due to 
its significantly higher elevation compared to geographical 
contours in the other grids. The MLP hyperparameters may need 
to be further adjusted when applied to high-elevation topographies, 
such as hilly areas, as the temporal characteristics of SPI3 in 
highlands tend differ from those in lowlands. 

The SPI3 prediction plots for each grid in South Sumatra 
Province are presented in Figure 4. The MLP-based prediction 
data appear closer to actual data. The LSTM model tends to be 
smoother and less responsive to sudden changes than actual data. 
This is particularly evident in areas with sharp peaks and valleys 
in the SPI3 data, where LSTM predictions often produce gentler 
peaks that do not fully match the observed values. The MLP 

model is more responsive and closer to predicting sudden 
changes in SPI3. However, in some areas, especially in sharp 
changes, this model can predict overshooting fluctuations or vice 
versa. The performance of the MLP is considered superior to that 
of LSTM in predicting drought, as evidenced by the closer 
alignment of predicted and actual data trends, as well as higher 
NSE values achieved by the MLP model. 

The upper quartile, lower quartile, and median values of 
MLP and SVR based predictions show minimal deviation from 

Table 5. Performance of accuracy estimator multiple linear 
regression (MLR), support vector regression (SVR), long short- 
term memory (LSTM) and multilayer perceptron (MLP) 

Grid Algo- 
rithm 

NSE (–) RMSE (–) MAPE (%) 

TR VAL TR VAL TR VAL 

1 MLR 0.75 0.72 0.66 0.98 5.6 10.7 

SVR 0.77 0.69 1.94 1.77 16.5 14.8 

MLP 0.46 0.69 0.74 0.87 5.8 9.8 

LSTM 0.18 0.16 1.42 1.43 11.7 12.3 

2 MLR 0.72 0.73 0.88 0.91 7.6 10.1 

SVR 0.77 0.71 2.16 2.22 19.0 21.2 

MLP 0.43 0.73 0.81 0.86 6.5 9.2 

LSTM 0.21 0.22 1.45 1.47 17.9 16.7 

3 MLR 0.82 0.78 0.86 0.90 7.4 9.8 

SVR 0.84 0.76 2.32 2.61 20.9 26.9 

MLP 0.52 0.75 0.78 0.85 6.3 6.8 

LSTM 0.19 0.18 1.51 1.53 16.1 15.8 

4 MLR 0.79 0.74 0.95 1.02 8.6 17.8 

SVR 0.79 0.71 2.45 2.27 22.2 21.7 

MLP 0.44 0.74 0.93 0.96 7.8 17.2 

LSTM 0.21 0.19 1.43 1.42 25.1 24.5 

5 MLR 0.75 0.75 0.74 0.96 5.4 11.3 

SVR 0.76 0.71 1.82 2.49 15.3 21.9 

MLP 0.32 0.76 0.68 0.94 5.6 10.2 

LSTM 0.22 0.23 1.53 1.67 10.9 12.0  

Explanations: TR = training, VAL = validation/testing. 
Source: own study. 
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the actual data (Fig. 5). In contrast, the corresponding values of 
the SPI3 predictions produced by LSTM and MLR models deviate 
significantly from the actual data. This indicates that MLP model 
maintains superior performance compared to LSTM and MLR, as 
it better preserves the statistical characteristics of the original 
prediction dataset. 

DISCUSSION 

The MLP algorithm has optimal performance for long-term 
drought prediction, such as with the SPI3 index. The MLP model 
is responsive and closely follows the actual SPI3 patterns over 
long-term periods. Providing early warning information for 
drought is critical, and the implementation of MLP is highly 
appropriate. The statistical characteristics of the MLP prediction 
results closely align with those of the actual data. Neural network- 
based algorithms are capable to detect nonlinearity patterns in 
datasets compared to regression-based methods such as MLR and 
SVR. This is due to adaptive learning process during training, 
where network weights and biases are continuously updated, 
enabling the model to effectively learn and predict drought 
conditions in accordance with the characteristics of the SPI3 
index. 

CONCLUSIONS 

Drought prediction in this study was designed through pre- 
processing stages, including pre-processing of the Fengyun-4A 
satellite monthly rainfall dataset for the 2019–2022 period, 
transforming the rainfall dataset into standardised precipitation 
index (SPI) values, segmenting dataset, determining hyper-
parameters of Multilayer Perceptron (MLP) and Long Short- 
Term Memory (LSTM) algorithms, and testing the performance 
of standardised precipitation index using three-month (SPI3) 
prediction accuracy. Overall, MLP and LSTM models accurately 
predict drought conditions; however, MLP is considered superior 
compared to LSTM. This is evident from the higher NSE values 
and lower error metrics observed in the MLP model, as well as 
closer alignment of MLP predictions with the actual data trends. 
Nevertheless, the study has a limitation concerning the hyper-
parameter tuning process. Certain hyperparameter configurations 
may only be suitable for certain drought cases in South Sumatera 
Province. It is therefore recommended to tune MLP hyper-
parameters based on various optimisation methods such as 
genetic algorithm, simulated annealing, ant colony optimisation, 
stingless bee algorithm, or other approaches. 
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