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Abstract: The objective of this research was to evaluate the adsorption capacity of the shell biomass (Dioscorea 
rotundata), taking into account the impact of temperature, bed height, and particle size on the removal of nickel(II) 
ions in aqueous solution in a continuous fixed-bed column system; performing the modelling of the break curve. The 
biomass was characterised by SEM-EDS analysis. The analysis found that it represents a rough, heterogeneous 
structure, rich in carbon and oxygen, with mesopores, and is suitable for removing heavy metals. It also determined the 
optimum parameters of the bed height, particle size, and temperature, keeping the pH and the initial concentration of 
the solution constant. The results revealed that the bed height and the particle size are the two most influential variables 
in the process. Ni(II) removal efficiencies range between 85.8 and 98.43%. It was found that the optimal conditions to 
maximise the efficiency of the process are temperature of 70°C, 1.22 mm particle size, and 124 mm bed height. The 
break curve was evaluated by fitting the experimental data to the Thomas, Adams–Bohart, Dose–Response, and Yoon– 
Nelson models, with the Dose–Response model showing the best affinity with a coefficient of determination R2 of 
0.9996. The results obtained in this research showed that yam shell could be suggested as an alternative for use in the 
removal of Ni(II) ions present in an aqueous solution in a continuous system.  
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INTRODUCTION 

Population growth and industrial development have caused 
adverse environmental effects due to a large amount of pollutants 
discharged into water sources [NITHYA, et al. 2020; LIANG et al. 
2017]. Among these pollutants, heavy metals, such as chromium, 
mercury, cobalt, nickel, lead, and arsenic, are poured into aquatic 
media as a result of processes such as mining, tanning, battery 
manufacturing, paint production, and other industrial activities 
[MOINO et al. 2017; WU et al. 2021]; they have a severe impact on 
humans, animals, and aquatic life, because of their stable nature, 
and resistance to degradation [BABARINDE et al. 2016; RESKE et al. 
2020]. Nickel is a metal used in electroplating, metallisation, crude 
oil extraction processes, manufacturing of paint and powder, 
batteries, alloy, brass, and, everyday products such as cosmetics, 

clothing, and electronics [HERRERA-BARROS et al. 2020; PRIYANTHA 

et al. 2019]. Several technologies, including membrane filtration, 
ion exchange, electrochemical techniques, and chemical precipita-
tion have been proposed to remove nickel and other heavy metal 
ions from the aqueous solution [MAHARANA et al. 2021; YU et al. 
2021]. The adsorption technique has been recognised as an 
attractive alternative to other contaminant removal techniques due 
to its easy handling, low cost, and availability of the adsorbents 
[BATOOL et al. 2018; SABIR et al. 2021]. 

In the adsorption of Ni(II), it has been employed in 
a continuous system, with the sugar cane bagasse achieving 
a removal rate of no more than 36.4% [ANOOP KRISHNAN et al. 
2011], while passion fruit and grapefruit husks and bagasse 
achieved the maximum removal capacities in the bed for each 
bio-adsorbent amounting to 70.2, 29.1, and 12.1 mg∙g–1, 
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respectively [CHAO et al. 2014]. Other experiments evaluated the 
removal of heavy metals with Sargassum sp. [BARQUILHA et al. 
2017], reaching a removal rate of 1.23 mmol∙g–1 for nickel(II) and 
1.51 mmol∙g–1 for copper(II); with cocoa shell [LARA et al. 2016], 
while 91.32% and 87.8% removal rates were achieved for lead(II) 
and copper(II), respectively. A wide variety of biomaterials have 
been studied to prepare adsorbents with suitable properties to 
absorb heavy metal ions. Food waste biomass is an attractive 
source of biomaterials that mitigate municipal solid waste disposal 
problems [MALIK et al. 2021]. Waste disposal on the northern coast 
of Colombia represents a severe problem for the environment and 
public health because agriculture has a significant impact on the 
total volume of solid waste generation, and dispersed agricultural 
sources contribute 84% of the biochemical oxygen demand of 
surface waters [BIGDELOO et al. 2021; TOBÓN-OROZCO, VASCO 

CORREA 2021]. In the northern region of Colombia, agricultural 
production focuses on yucca (Manihot esculenta) and yam 
(Dioscorea rotundata), which account for 35 and 18% of total 
production, respectively [TEJADA-TOVAR, et al. 2020]. 

Agricultural waste has been studied as an adsorbent for the 
removal of pollutants such as heavy metals [BISWAS, NAG 2021], 
nitrogen and phosphorus [DAI et al. 2018], dyes [AFROZE, SEN 

2018], and organic pollutants [NAGHIZADEH et al. 2017]. In this 
study, agricultural crop biomass (Dioscorea rotundata), widely 
available in northern Colombia, is used to prepare the biosorbent 
and remove Ni(II) ions present in an aqueous solution. The 
optimal temperature, bed height, and particle size were evaluated 
in adsorption mode in a continuous system. The modelling of the 
break curve and the study of solute concentration in the solution 
over time were performed. 

MATERIALS AND METHODS 

All reagents are analytical grade; nickel sulfate (NiSO4) was used 
to prepare the nickel solution at 100 mg∙dm–3. HCl and 1 M 
NaOH were used to adjust the pH of the solution. Yam shells 
were collected as post-harvest waste. The best available biomass 
was selected, washed with deionised water, dried in a Lauda 
Alpha brand oven at 60°C for 24 hours, and reduced in size in 
a roller mill. The size classification was performed in a Shaker 
type sieve shaker, Edibon Orto Alresa brand, using sieves with 
mesh numbers 120, 45, 35, 18, and 16, according to the ASTM 
D6913-04 [2004], in order to select the sizes to evaluate 0.124, 
0.355, 0.5, 1.0, and 1.19 mm. The bio-adsorbent was charac-
terised, before and after adsorption, by scanning electron 
microscopy (SEM) and X-ray scattering (EDX). 
• Preparation of the adsorbent 

The yam shell (Dioscorea rotundata) was obtained as 
postharvest waste from the Bolivar department area – Colombia. 
The shells that were in a good condition were selected, washed, 
dried in the sun until obtaining a constant mass, and reduced in 
size in a roller mill. After that, they were classified by size on 
a stainless steel sieve. 
• Adsorption tests 

The adsorption experiments in a continuous packed bed 
system were performed following the experimental design, in 
adsorption equipment in acrylic columns of 25.64 cm in length 
and 4.4 cm in diameter [TEJADA-TOVAR et al. 2018]. The synthetic 
solution of Ni(II) with a concentration of 100 mg∙dm–3, at pH 6, 

and flow of 0.75 cm3∙s–1 was brought into contact with the 
adsorbent. An experimental design 22 in central star composite 
response surface was used for experimental development and 
carried out at Statgraphics Centurion. This type of design allows 
for studying the effect of independent variables on the response 
when varying them simultaneously, performing the least number 
of experiments possible, without the need for replications, since it 
maps a region of a response surface [DEMIREL, KAYAN 2012]. The 
temperature (30, 40, 55, 70, and 80°C), the particle size (0.124, 
0.355, 0.5, 1.0, and 1.19 mm), and the bed height (6.13, 30. 65, 
100, and 123.8 mm) were varied. 

The system temperature was controlled by a resistor 
connected to a PID controller with a pump for recirculation. 
The concentration of Ni(II) in the solution was determined by 
atomic absorption at 232 nm in a Buck Scientific model 210 VGP 
atomic absorption spectrophotometer [MANJULADEVI, et al. 2018]. 
Adsorption efficiency was determined by Equation (1): 

%R ¼
C0 � Cf

Ci
100 ð1Þ

where: C0 = the initial concentration evaluated (mg∙dm–3), Cf = the 
final concentration of Ni(II) in the solution after the adsorption 
tests (mg∙dm–3), Ci = initial concentration in the solution before 
the adsorption tests (mg∙dm–3). 
• Construction and modelling of the break curve 

Once the experiments were performed, the optimal condi-
tion to execute the metal adsorption break curve was determined 
to study the adsorbent’s behavior during the time [MARTÍN-LARA 

et al. 2017]. The statistical analysis of the results was carried out 
by analysing variance ANOVA and response optimisation in the 
Statgraphics Centurion XVII software. The adsorption capacity 
of the column was determined using Equation (2) [APIRATIKUL, 
CHU 2021]: 

qj ¼
CjfQ

1000ms

ts
0

1 �
Cjout

Cjf

� �

dt ð2Þ

where: qj = the concentration of the j-ion in the adsorbent 
(mmol∙g–1), Cjf = the feed concentration of the j-ion in the liquid 
phase (mmol∙dm–3), Q = the volumetric flow rate of the solution 
flowing through the column (cm3∙min–1), ms = the mass of the 
biomass with which the tower is packed (g), Cjout = the output 
concentration of the j-ion in the liquid phase (mmol∙dm–3), 
ts = the time of column saturation (min). 

The experimental data of the rupture curve were adjusted to 
the theoretical models of Adams–Bohart, the Thomas, the Yoon– 
Nelson, and the Dose–Response model, with the objective to 
describe and analyse the behaviour of the column through graphs 
(C/Ci)-t. 

RESULTS AND DISCUSSION 

BIOADSORBENT CHARACTERISATION 

The morphology of the yam shell was observed by scanning 
electron microscopy (SEM) with x200 magnification before and 
after removing the Ni(II) ions. The micrographs and EDS 
spectrum are shown in Figure 1. 
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It was observed that the surface of the biomass is irregular 
with the presence of mesopores [DENG et al. 2018]. From the EDS, 
it was established that the material presents a diverse structure, 
rich in oxygen, carbon, and calcium, with traces of multiple 
elements such as potassium, silicon, aluminum, phosphorus, and 
iron, among others. It has been reported that the presence of 
these materials attached to the functional groups of lignocellulosic 
materials is associated with the ability of this type of biomasses to 
capture ions through ion exchange [DENG et al. 2020]. After the 
adsorption process, the appearance of the Ni(II) ion in the EDS 
spectrum at the high-intensity peak 1.4 keV was observed; 
likewise, from the SEM micrography, it was evidenced that the 
exposed surface of the bio-adsorbent softens, which is attributed 
to the coating of the pores by the metallic ion [PRIYANTHA et al. 
2019]. 

ADSORPTION EXPERIMENTS 

Figure 2 shows the effect of particle size, bed height, and 
temperature on Ni(II) removal efficiency, respectively. It was 
found that the best adsorption results were obtained at 1 mm size, 
70°C temperature, and 124 mm bed height. 

Figure 2a shows that adsorption efficiency increases in 
proportion to particle size in proportion to particle size. In batch 
system adsorption processes, it is common to find that the 
removal rate increases with the reduction of the particle diameter 
of the adsorbent, since it increases the surface contact area and 
the adsorbent’s ability to capture contaminants [HERRERA-BARROS 

et al. 2020; RAULINO et al. 2014; SAADAT et al. 2016]. However, in 
a continuous bed system and the ideal particle size, the packed 
bed’s tortuosity must be guaranteed to ensure contact of the 
contaminated solution with all the contaminants and thus 
maximise removal [TEJADA-TOVAR et al. 2018]. In the present 

Fig. 1. SEM micrographs of the yam shell (a) before and (b) after Ni(II) adsorption;  
source: own study 

Fig. 2. Impact of a) particle size, b) bed height, 
c) temperature on Ni(II) removal efficiency;  
source: own study 
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study, it was found that increasing the particle size increases the 
percentage of Ni(II) ion removal, with this variable being the 
most influential in the process, according to the analysis of 
variance in Table 1. As regards the effect of the bed height 
reported in Figure 2b, it is observed with a bed height of 124 mm. 
The removal efficiency is maximum because the higher amount of 
adsorbent increases the number of active sites of adsorption 
present in the adsorbent [HAROON et al. 2016], as well as the 
residence time, therefore the diffusion of the ions is more 
effective, since the contact between the phases is more intimate 
[VILLABONA-ORTIZ et al. 2020]. 

Temperature is the evaluated factor with the least influence 
on the process, according to the variance analysis in Table 1. Its 
variation does not contribute significantly to the removal of the 
heavy metal. However, a slight increase in removal efficiency 
proportional to temperature is observed, which coincides with 
what is reported by SEIFPANAHI et al. [2017]. This may be because 
the temperature increase contributes to the speed of diffusion of 
the ions from the solution to the exposed surface of the 
biomaterial [AKPOMIE et al. 2018; ŠURÁNEK et al. 2021]. 

Table 1 shows the analysis of variance (ANOVA) performed 
at Statgraphics Centurion XVII. After partitioning the variability 
of the percentage of Ni(II) removal for each of the variables 
evaluated (particle size, temperature, and bed height), the 
significance of each effect was determined by comparing its 
average square with an estimate of the experimental error. In this 
case, two effects have a p-value lower than 0.05, bed height and 
particle size, so it is inferred that they have a direct influence on 
the process. 

BREAK CURVE MODELLING 

The rupture curve, which studies the bed’s behaviour over time, 
thus determining the saturation time and adsorption capacity 
[PATEL 2020; VILVANATHAN, SHANTHAKUMAR 2015] was evaluated 
for yam peel at the best condition found: 1.22 mm particle size, 
70°C and 124 mm bed height, with a flow rate of 0.75 cm3∙min–1 

and initial concentration of 100 mg∙dm–3, for 5 hours. The break 
curve data were adjusted to the models of Yoon–Nelson, Adams– 
Bohart, Dose–Response, and Thomas to analyse the processing 
time adsorption profile and describe a column’s behaviour. 

The Adams–Bohar model, represented in Equation (3), 
assumes that the rate of adsorption is proportional to the residual 
capacity of the solid and the concentration of the retained species, 
and is used to describe the initial part of the break curve 
[BOUCHERDOUD et al. 2021; SAADAT et al. 2016]. 

C

Co
¼ ekABCit�

kABN0Z

v ð3Þ

where: C = the concentration of solute in the liquid phase 
(mg∙dm–3), kAB = the kinetic constant (dm3∙mg–1∙min–1), t = time 
(min), N0 = the maximum volumetric sorption capacity (mg∙dm–3), 
Z = the column filling height (cm), v = the linear flow rate 
(cm∙min–1). 

The Thomas model, described in Equation (4) is a derivation 
based on second-order kinetics and stipulates that biosorption is 
not limited by the chemical reaction but is controlled by the 
transfer of matter at the interface [CORRAL-ESCÁRCEGA et al. 2017; 
YUSUF et al. 2020]. 

C

Co
¼

1

1þ e
kTh
Q

qThw� CiVefð Þð Þ
ð4Þ

where: kTh = Thomas’ speed constant (cm3∙mg–1∙min–1), qTh = the 
maximum concentration of solute in the solid phase (mg∙g–1), 
w = mass of adsorbent (g), Vef = the cumulative throughput 
volume (l) of treated solution. 

The Yoon–Nelson model assumes that the decrease rate in 
the probability of adsorption for each adsorbate molecule is 
proportional to the probability of adsorption of the adsorbate and 
the probability of advancement of the adsorbate into the 
adsorbent [YUSUF et al. 2020]. It is expressed by Equation (5): 

C

Co
¼

1

1þ ekYN � � tð Þ
ð5Þ

where: kYN = Yoon–Nelson’s constant of proportionality (min–1), 
and τ = the time required to retain 50% of the initial adsorbate 
(min). 

The Dose–Response model has been commonly used in 
pharmacology to describe different types of processes, and is 
currently being applied to describe bio-adsorption in columns, as 
summarised in Equation (6) [MOSCATELLO et al. 2018]. 

C

C0

¼ 1 �
1

1þ C0Qt
q0X

� �a ð6Þ

where: a = the model constant; q0 = maximum solute 
concentration in the solid phase (mg∙g–1); X = the amount of 
adsorbent in the column (g), Q = the flow rate (dm3∙min–1). 

The experimental data adjustment was fitted to the Adams– 
Bohart, Thomas, Yoon–Nelson, and Dose–Response models, as 
shown in Figure 3. The adjustment parameters of the models are 
shown in Table 2. 

Table 1. Analysis of variance (ANOVA) for nickel(II) adsorption 

Source Sum of 
squares Gl F-ratio p-value 

A: temperature 5.40535 1 2.19 0.2358 

B: particle size 19.1601 1 7.75 0.0488 

C: bed height 36.4851 1 14.75 0.0311 

AA 0.824487 1 0.33 0.6041 

AB 1.39545 1 0.56 0.5071 

AC 0.922112 1 0.37 0.5846 

BB 2.99877 1 1.21 0.3512 

BC 0.942819 1 0.38 0.5806 

CC 12.9989 1 5.26 0.1057 

Error total 7.41862 3 – – 

Total (corr.) 164.967 12 – –  

Source: own study. 
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Figure 3 shows that the highest adsorption of metal ions 
occurs in the first instant of the process when making contact 
with the biomass due to the high availability of active sites in the 
unsaturated bio-adsorbent [MAHDI et al. 2018; YUSUF et al. 2020]. 
As the bed operation time elapsed, its efficiency gradually 
decreased due to the occupation of active sites. Therefore, the 
concentration of the effluent increased until the output 
concentration was 30% of the input concentration of 100 
mg∙dm–3 [ABDOLALI et al. 2017]. However, the adsorbent’s total 
saturation is not reached in the column, so the trend of the break 
curve is upward after the contact time. 

According to the sum of errors (SS) and the R2 presented in 
Table 2, it can be said the experimental data of Ni(II) removal on 
yam shells fit better to the Dose–Response model. Considering 
the industrial applications of adsorption, the identification of the 
advance time is vital since it defines the operational limit of the 
column. This fact is defined as the time interval in which the 
output concentration is higher than the threshold established, 
however such saturation was not reached in this study [YAHYA 

et al. 2020]. It was established that in the study time, the biomass 
can be used because they have a high capacity for heavy metal 
adsorption [MISHRA et al. 2016]. According to Equation (2), qtotal 

of the column was established at 16.1512 mg∙g–1; thus, although 
the R2 value was calculated for the Dose–Response model, it was 
observed that the qD-R determined for this model is significantly 
lower than the one obtained experimentally; in this sense, the 
model that is closest to the experimental values is the Thomas 
model, so it is assumed that the adsorption mechanism was 
a Langmuir type adsorption followed by a pseudo-second-order 
chemical sorption [LAVANYA et al. 2020; SRIVASTAVA et al. 2019]. 
The prediction of the break curve by the Thomas and Dose– 
Response model was previously reported using yersiniabactin as 
an adsorbent [MOSCATELLO et al. 2018], using red beans 
impregnated with magnetite nanoparticles [XAVIER et al. 2018], 
cocoa shells [VERA-CABEZAS et al. 2018], sugar cane bagasse [VERA 

et al. 2019] and KIAgNPs decorated MWCNTs nanoadsorbent 
[EGBOSIUBA et al. 2021]. 

CONCLUSION 

The conclusions from the present investigation are as follows: 
(i) The SEM-EDS analysis of yam shells shows a rough, 
heterogeneous, carbon, and oxygen-rich structure, featuring 
mesopores, suitable for the removal of heavy metals. (ii) Ni(II) 
removal efficiencies between 85.8 and 98.43%, showing the 
affinity of the bio-adsorbent for the metallic ion. (iii) The increase 
of the bed height and particle size favours the process obtaining 
a theoretical maximum removal for Ni(II) of 101.352% at 70°C, 
1.22 mm of particle size and 124 mm of bed height; for 
a maximum capacity of adsorption in the bed of 16.15 mg∙g–1. 
(iv) The Dose–Response model described the behaviour of the 
breakdown curve with R2 of 0.9996. (v) Yam shell is suggested as 
an alternative for removing Ni(II) ions present in an aqueous 
solution in a continuous system through bio-adsorption. 
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