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Abstract: This article examines the short- and long-run effects of water price, system input, income, temperature on 
domestic water demand for Amman area over the period of 1980–2012. An empirical, dynamic autoregressive 
distributed lag (ARDL) model for water demand is developed on a yearly basis. This approach is capable of testing and 
analysing the dynamic relationship with time series data using a single equation regressions. Results show the ability of 
the model to predicting future trends (short- and long-run association). The main results indicate that water demand in 
limited water environment is partially captured in the long-run by the amount of water reaching the customer. The 
short- and long-run elasticities of water price (–0.061, –0.028) and high temperature (0.023, 0.054) indicate inelastic 
behaviour on water demand both in short- and long-run, while the lagged water price has a significant effect on 
demand. Income represented by gross domestic product (GDP) slightly affects water consumption in the long-run and 
insignificantly in the short-run (0.24, 0.24). Water consumption is strongly linked to consumption habits measured by 
lagged billed amount 0.35, and is strongly linked to amount of supplied water both in short- and long-run (0.47, 0.53). 
These results suggest that water needs should be satisfied first to allow controlling water demand through a good 
pricing system. 

Moreover, the association identified between demand and water system input, and the lesser elasticities of water 
price and other explanatory variables confirm the condition of water deficit in Amman area and Jordan. The results 
could be rolled out to similar cities suffering scarce water resources with arid and semi-arid weather conditions.  
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INTRODUCTION 

Water demand description and prediction represent a particular 
area of interest as scarcity and water need increase resulting in 
water stress in many regions [VÖRÖSMARTY et al. 2000]. In this 
framework, the ability to identify factors affecting the demand 
and its trend in time is of foremost importance: the multiple 
factors affecting the trending in water consumption made the 
guess of the needed water for a given place and time a difficult 
task. Similarly, the complex interactions between the human 
society and the natural and anthropic environment make 
forecasting and predicting a challenging deal [HOUSE-PETERS, 
CHANG 2011]. The prediction of spatial and temporal patterns of 
future water use is crucial for the design of water policies, the 

planning for new sources development and the system expansion. 
The understanding of the variables underpinning water demand, 
can also help in designing water allocation policies [GAM et al. 
2013; MOMEN, BUTLER 2006]. 

Residential water demand has been extensively analysed 
during the last decades using several formalizations and models to 
decrypt its relation with the affecting variables [MARTÍNEZ- 
ESPIÑEIRA 2007]. Models used vary: dynamic or static, time 
horizon applicability (short, medium or long term), water sources 
(surface, groundwater or overall water). The researchers that 
considered the overall water sources have based their work on the 
assumption that water is a homogenous good, i.e. a good similar 
in physical composition, and quality but different in price and 
availability. 
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This section describes the variables used in developing water 
demand forecasts. It gives an overview of the previous researches 
that studied the independent variables behaviour and it main 
statistical characteristics on water demand. The literature review 
included selected published research during the past two decades 
both in world and those in Jordan.  

The main explanatory variables (determinants) used in 
literature to quantify water demand are: the economic aspects 
(water pricing, income); meteorological and weather factors 
(temperature, rainfall, drought); demographic characteristics 
(population and household composition and urban density); 
and non-price consumption controls applied by the utility, like 
awareness conservation campaigns [WORTHINGTON, HOFFMANN 

2007]. Suitable price variables are the marginal price and the 
Nordin difference, i.e. the difference between the billed value of 
the consumed water at marginal price and the total bills 
[SCHEFTER, DAVID 1985]. 

Climate change, population growth, the economic develop-
ment resulting from industrial and agriculture growth create 
a pressure in water resources to fulfilment of water demands 
[BERREDJEM, HANI 2017; BOUZNAD et al. 2020; MIODUSZEWSKI 2006]. 

MUSOLESI and NOSVELLI [2007]utilized generalized method of 
moments (GMM) to develop water demand function and to 
estimate short-run and long-run price elasticities of panel data of 
Italian municipalities, also in 2010 the same researchers used the 
ARDL co-integration approach to shape the water demand 
equation in the short and long term for Milan. The paper study 
the factors affecting the water demand, mainly water price and 
habits. Additionally, climate, income, and productive activity are 
examined to see their effects on water consumption [MUSOLESI, 
NOSVELLI 2010]. 

ARDL co-integration has been also used by Taştan who 
developed a model to examines the factors affecting water 
demand consumption in long and short term in Istanbul, Turkey. 
The paper gave attention to the effect of water price on the water 
demand. The study included the effects of industrial production, 
average temperature, total precipitation, and electricity and 
natural gas prices on water demand [TAŞTAN 2018]. 

TOUMI and TOUMI [2019] examine the asymmetric causality 
for renewable energy REC as well as the emissions of carbon 
dioxide (CE) and real gross domestic product (GDP) in the short 
and long run using time series data from Kingdom of Saudi 
Arabia (KSA) between 1990 and 2014, the authors using non- 
linear autoregressive distributed lag method (NARDL). 

HE et al. [2019] used environmental tax, GDP, unemploy-
ment rate, greenhouse gas emissions, nitrogen oxides emissions, 
and sulphur oxides emissions to build ARDL model to reports the 
performance environmental tax levied in 36 countries of OECD 
from 1999–2014. 

Similar to other developing countries, Jordan realized the 
importance of residential water demand forecasting to cater for 
economic development and the competition on water between 
sectors and to plan additional water resources required by 
economic activities – including agriculture, industry and 
commercial services besides the population increase and urbani-
zation, which boost the water needs for residential uses. 

MWI has tried to estimate future demand; they utilized 
single coefficient methods, which is based on the population.  

Previous researches of water demand gave attention to the 
effect of household characteristics, together with price variables. 

Studies on econometric estimation of water demand in Amman 
used cross-section and panel data over short time periods. Long- 
run water consumption elasticities have been rarely estimated for 
Amman. 

Water household demand in Jordan has been studied by 
SALMAN and AL-KARABLIEH [2006] using quarterly aggregate panel 
data. The model results show the negative effects of the water 
price on water demand with –0.18 elasticity and positive elasticity 
for household income 0.02. Moreover, the paper concludes that 
both water price and household income have inelastic behaviour 
regarding water demand. 

AL-NAJJAR et al. [2011] built two water demand models; the 
first one was the household water demand, and the second was 
the per capita water demand. The two models were based on 
socioeconomic panel data and solved by two-stage least squares 
(2SLS) method. The results of the paper show that the water price 
has negative effects on water demand with elasticity of –0.52 and 
–0.67 for the household demand and per capita water demand 
respectively, while for the coefficient of household income, 
a positive income elasticity with a value 0.22 has been obtained. 
Nevertheless, the paper indicates that the water price and income 
have insignificant effects on water consumption. 

TABIEH et al. [2012] use socioeconomic cross-section data 
focusing on Zarka Basin (which includes Amman) to estimate 
water demand function. Results indicate that water demand in 
Zarka Basin is inelastic with respect to the price and income with 
–0.47 and 0.05 for price and income coefficients, respectively.  

ARDL bounds testing approach has been also used to 
estimate Jordan's residential electricity demand over the period 
1980–2013 and to analyse the short and long-run effects of price 
and income on demand [AJLOUNI 2016]. 

In this work, municipal water demand determinant 
dynamics (short- and long-run elasticities) are estimated using 
the techniques of autoregressive distributed lag (ARDL). The 
ARDL model for Amman has been specified, estimated and 
checked using diagnostic analysis developed following the 
approach developed by PESARAN and SHIN [1999] and PESARAN 

et al. [2001].  
The lack of accurate data is an obstacle in modelling 

residential water use and demand [WORTHINGTON, HOFFMANN 

2007]. While most research literature used aggregated data at the 
utility, basin, water mains, i.e. major pipeline, or community 
levels, others utilized surveys at the household-level. The 
aggregated data inherit a concern in matching average water 
consumption with averages of the related information, coming 
from different source and representing different time periods. 
The yearly data can better overcome this concern. The frequency 
of data used in literature varies from hourly to yearly intervals.  

The Authors of this paper believe that using the auto-
regressive distributed lag (ARDL) co-integration approach in 
analysing water demand and its affecting factors specifically in 
water stressed countries may provide a powerful tool to effectively 
forecast water demand and thus water supply strategies. This 
research is using ARDL co-integration approach to estimating 
municipal water consumption elasticities, through estimating 
long- and short-run elasticities for Amman area. The Author 
selected to use data with annual frequency for Amman water 
systems and Jordan due to availability limitation of smaller 
frequencies.  
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This work will help providing a dynamic tool to forecast 
demand for Amman water utilities home for almost half of the 
population of Jordan that suffers from water scarcity and 
increasing water stress, financial constraints and other dynamic 
determinants of water demand.  

The developed model will allow the utility and Jordan to in 
selecting effective water demand management policies and 
strategies to minimize water supply and demand imbalance 
based on each policy determinant contribution to demand. 

The results could be rolled out to cities similar to Amman in 
size and conditions suffering scarce water resources and arid and 
semi-arid weather conditions to develop its policies and 
strategies. 

The main objective of this research is to empirically examine 
the determinants of water demand for Amman city by estimating 
and formulating a dynamic a model. The developed model can 
help Miyahuna (Amman water utility) to develop its water 
demand management policies and strategies to reduce the gap 
between the water supply and demand.  

The model describes the factors affecting water consump-
tion and helps predicting its short and long run future values 
in the Amman area. It contributes to the identification of 
the complex factors and its trend in affecting domestic water 
consumption which constitute the most important part of the 
overall water demand. It utilizes an autoregressive distributed 
lag co-integration model developed using different proposed 
yearly time series as potential descriptors. The determin-
ants studied include the lagged water consumption (water 
consumption habit), the per subscriber water consumption, 
amount of water that input to distribution system, marginal 
price, the income (gross domestic product) that provides 
an indication of the development of the lifestyle and the 
weather conditions represented by the number of days in 
the year in which temperature exceeds 30°C (average tempera-
ture in the study area during peak demand months May– 
October).  

MATERIALS AND METHODS 

STUDY AREA 

Jordan as well its capital city Amman, started to suffer water 
deficit since late 1960s that resulted from rapid population 
growth, increasing number of refugees seeking shelter, expansion 
of economic activities, and climate change effects, exacerbated by 
limited financial resources. This put Amman and Jordan water 
resources under increasing pressure with per capita yearly fresh 
water share of less than 125 m3∙y–1 [MWI 2013], and obliged 
Jordan to start shifting available fresh water to municipal uses.  

Amman water resources are located far away from the 
Amman populated area in both horizontal and vertical directions 
(examples: Zara-Maen water source at 35 km to the west and at 
an elevation below Amman populated area by 1500 m; Disi 
wellfield is located at 330 km to the south of Amman and at an 
elevation lower than Amman by 600 m) (see Fig. 1). This 
situation adds complication to the cost and management of 
Amman water systems and utility. 

The historical average annual rainfall is less than 200 mm 
over 92% of the land and 92% of the Kingdom area is desert or 

rangeland. In 2017, the population is estimated at 9.96 mln living 
on 89,297 km2 [Department of Statistics 2020b]. 

The municipal water uses is steadily increasing while 
irrigation water is decreasing since more than three decades 
[MWI 2016]. Figure 2 shows, for the 1994–2014 period, an 
average increase in municipal water supply of 3.1% while 
irrigation water decreased by 1.6%. At the Jordan level, the share 
of municipal water uses increased from 23% to 48% in the 1994– 
2013 period against 53% for irrigation in 2013. 

Amman is the capital city of Jordan with a population of 
four million. Residential water use share of Amman municipal 
water is 86.5% in 2015 (Fig. 3). The remaining is for commercial, 
governmental and small industrial customers. Most of the uses 
are indoor.  

The Ministry of Water and Irrigation adopted different 
strategies to face this water stress focusing its interests to supply 
water to human consumption [MWI 2016].  

Modernization of water systems and institutions in Jordan 
has started late in 1980s. It is only in 1988 that Water Authority of 
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Fig. 1. Jordan location map and location of Amman water resources; 
source: own elaboration based on GIS background data available about 
Jordan 

Fig. 2. Percent of water supply share in Jordan; source: own elaboration 
based on Ministry of Water and Irrigation data [MWI 2013] 
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Jordan (WAJ) has been established as a successor of Amman 
Wastewater Authority with a mandate to provide municipal water 
and wastewater services. WAJ has assigned the provision of the 
services within Amman governorate to the Jordan Water 
Company (Miyahuna) that was established for this purpose in 
2007. Later, WAJ and Miyahuna have agreed to widen the service 
area of Miyahuna to include Madaba Governorate, then Zarqa 
Governorate and recently Balqa Governorates through manage-
ment contracts.  

WAJ also started to realize the need to invests in exploring 
new water resources including the implementation of Disi Water 
Project which started conveying about 100 mln m3 of fossil water 
from the southern part of Jordan to Amman area since 2013. The 
Ministry studied also the possibility of desalinating water from 
the Red Sea and convey it to Amman area. 

The strategies also urged the water utilities including 
Miyahuna to adopting effective water demand management 
policies to minimize water supply and demand imbalance, 
intermittent supply and water preservation measures were also 
adopted, this create the need to forecast water demand using 
available historical data including those arranged in the form of 
time series.  

DATA AVAILABILITY 

The frequency of the data used is a yearly time series, this enables 
considering less complex models; HERRERA et al. [2010] indicated 
the need for more complex models that allow for non-linear 
structure to forecast high frequency demand. WORTHINGTON 

and HOFFMANN [2007] discussed the same issue in their survey 
paper. The time series for the available data are presented in 
Figure 4.  

Available data of annual frequency for Amman are collected 
and screened for irregularities and discrepancies. The yearly data 
of the selected variables (time series) are used for estimating 
municipal water consumption elasticities (short- and long-run 
elasticities for Amman).  

The data employed in developing the autoregressive 
distributed lag (ARDL) model in this research are tabulated in 
the form of time series (variables/determinants). The source, 
description and notation of collected time series data are shown 
in Table 1.  

Water demand (use) is estimated at the annual scale 
throughout the average of water-billed data of one customer 
and other explanatory variables, as presented in Table 1. The 
water use – per subscriber billed amount – shows a decreasing 
trend starting from 1998 until 2000, then it increased (Fig. 4a). 
The sharp increase in 2011 and the sharp drop in 2012 may be 
attributed to the shift in the billing cycle and the staggered 
reading time. In fact, utilities were only billed on monthly basis 
during 2011, and on quarterly bases elsewhere. Moreover, the 
average bill value includes the amount paid by the customer for 
both water and wastewater services as well as a fixed amount. 

The water marginal price depicts an increasing trend 
starting from 1980. The sharp increase in 1982, 1991, 1998, 
2011 and 2012 is due to tariff reforms (Fig. 4b).  

The supplied amount (system input) has not changed 
significantly during the 1980s, reaching the peak in 1992, then 
steadily decreased until 2003 where a small increase is noticed due 
exploiting the groundwater resources and the increase of Zai 
water treatment facility capacity (Fig. 4c). An increase was 
achieved in 2013 and 2014 due to start of operation of the new 
Disi water resource project. 

The population growth rate for Amman shows sharp 
increases in 1991, 2004 and 2011 due to refugees. These non- 
normal growth rate affected both the per capita billed amount 
and the GDP/C.  

The declination in per capita gross domestic product at real 
prices started after 1982 reaching the minimum during the 1989– 
1991 devaluation of Jordan Dinar. Then started to recover until 
2008 peak, with a value of 1237 JD per person. Per capita GDP 
dropped by a total 17% during 2009–2015 with annual shrinkage 
rate of 2.85%. The inverse trend direction after 2008 refers to the 
effect of the financial crisis (Fig. 4d). 

The temperature related criterion is number of days in the 
year in which temperature exceeded the average high temperature 
during the peak demand months of May–October in Amman (30° 
C); Marka Airport station in Amman is selected to represent the 
study area. The temperature time series shows an increasing trend 
with random oscillation (Fig. 4e). The increasing trend (although 
the short time-series) may possibly be attributed to climate 
warming, as the downscaled climatic models show an increasing 
pattern in temperature.  

The general descriptive statistics of all individual variable 
are calculated using Eviews Software and the results are included 
in Table 2 while the trend and values are shown in Figure 4. The 
plots and tabulated data, as well as the process knowledge are 
fundamental in determining the form of the model to be fit to the 
data. 

CHOICE OF THE VARIABLES 

The optimal selection of variables able to adequately capture the 
demand (i.e., the billed amount) dynamics is discussed here. 
It includes a judgment of the effect on the dependent variable 
(DV) of the timing selected for the independent variables (IV). 
The chosen variables in this study have been explored 
internationally, and some of them locally, they show the central 
role in water demand forecasting [ARBUÉS et al. 2003; TABIEH et al. 
2012].  

The explored variables in this study may have a long-run 
and short-run effect on the dependent variable, as discussed on 

© 2021. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/) 
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Fig. 4. Time series used in the analysis in natural logarithm against years 
in horizontal axis of: a) per subscriber yearly billed water amount (m3∙y–1) 
(LBC); b) marginal price (LMP) c) yearly per subscriber system input 
(LIC) (m3∙y–1 per subscriber); d) real per capita GDP at basic prices (LGC) 
(JD per capita); e) number of days in which temperature exceeded 30°C in 
Amman (LT30); source: own study 

Table 1. List of time series used (determinates) and its source and 
notation 

Variable/determinant Symbol Source of data 

Demand per subscriber account 
= yearly water use per account 
(m3∙y–1 per subscriber) 

Bc 

Miyahuna and Water 
Authority of Jordan (WAJ) 

Marginal price in piaster  
(100 piaster = 1 Jordan Dinars  
– JD) 

Mp 

System input per subscriber 
(m3∙y–1 per subscriber) Ic 

Per capita real GDP at basic 
prices (JD) Gc 

Central Bank of Jordan and 
Department of Statistics 
(DOS) Department  
of Statistics [2020a] 

Number of days temp exceeded 
30°C in the year T30 Jordan Meteorological  

Department (JMD)  

Explanations: JD1 = USD1.142. 
Source: own elaboration based on listed sources. 

Table 2. Descriptive statistics of individual variable 

Statistic 
Descriptive statistics of individual Variable 

LBc LMp LIc LGc LT30 

Mean 5.303 4.086 6.008 6.957 4.708 

Median 5.326 4.136 5.960 6.995 4.691 

Maximum 5.514 4.633 6.318 7.125 5.081 

Minimum 5.073 3.315 5.730 6.696 4.369 

Standard deviation 0.147 0.327 0.199 0.128 0.143 

Skewness –0.123 –0.650 –0.015 –0.487 0.199 

Kurtosis 1.553 2.807 1.310 1.977 3.312 

Jarque-Bera 2.960 2.375 3.927 2.744 0.352  

Explanations: LBc = per subscriber yearly billed water amount (m3∙y–1), 
LMp = marginal price, LIc = yearly per subscriber system input, LGc = 
real per capita GDP at basic prices, LT30 = number of days in which 
temperature exceeded 30°C in Amman. 
Source: own study. 
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the most literature [AL-NAJJAR et al. 2011; CARVER, BOLAND 1980; 
MARTINEZ-ESPIÑEIRA 2002; NAUGES, THOMAS 2003]. Table 3 lists the 
effect of the explored variable on water demand in the long and 
short run as presented in different literature. 

A log-log model (natural logs for variables) is used as the 
relationship suits nonlinear parameters. Variables log transforma-
tion generates the desired linearity in parameters which is one of 
the ordinary least square (OLS) assumptions. The natural log 
enables a straightforward interpretation of the regression 
coefficients as it represents the elasticity of the dependent 
variable with respect to independent variable. In other words, 
the coefficient is the estimated percent change in DV for a percent 
change in the IV. 

GENERAL FORM OF THE MODEL 

The overall approach can be subdivided in a sequence of steps: first 
is the selection of an appropriate form for the mathematical model, 
then a diagnostic analysis is performed to check variable station-
arity. ARDL technique is used to solve the model and, when the 
model is statistically acceptable, forecasting is performed. 

The general form of the model is initially drafted to include 
all variables that are expected potentially affect the demand, 
specifically those included in Table 3. Refinement is made as 
a result of the analysis. The selected model is multiple-coefficient, 
non-linear, multiplicative, and logarithmic. With reference to the 
notations of variable chosen in Table 3, the initial form of the 
model is described as: 

c ¼ f Mp; Ic; Gc; T30ð Þ þ " ð1Þ

Bct ¼ btMpt
b1Ict

b2DGct
b3T30t

b5e"t t ¼ 1; . . . ; t ð2Þ

Its linear econometric transformed form can be written as  

lnBct ¼ b0 þ b1 lnMpt þ b2 ln Ict þ b3 lnGct þ b4 lnT30t þ "t ð3Þ

where: Bc is billed amount/subscriber, bi represent direct 
elasticities and the error term (εt) is assumed to be independently 
and identically is distributed (iid).  

The demand, Bct, is expected to be inversely proportional to 
water marginal price, Mpt (in piasters, 1 piaster = 1/100 Jordan 
dinars). Moreover, the demand is expected to be directly 
proportional to the system input, Ict, the number of days in 
which temperature exceeded 30°C, T30t and per capita real gross 
domestic product at basic prices, Gct. The system input is 
included in the model as it is assumed that the demand not fully 
satisfied, this assumption will be specifically tested. The nominal 
value of the marginal price is chosen due to the large fluctuations 
in both inflation and JD–$ exchange rate during the observation 
period, and to the fact that the customer feels the nominal value, 
that includes the inflation rate. The above assume that water 
behaves as a necessary good/service. 

UNIT ROOT TESTS 

Both augmented Dickey–Fuller (ADF) [DICKEY, FULLER 1979] and 
Phillips and Perron (PP-1988) [PHILLIPS, PERRON 1988] unit root 
test is used to check the stationarity of the variables. The null 
hypothesis of both tests indicates that there is a unit root if the 
probability value is more than 10% and/or 5% or 1% depends on 
the level of significance used or if the absolute value of the 
t-statistics is less than critical value at the different level of 
significance. 

Augmented Dickey–Fuller (ADF) and Phillips and Perron 
(PP-1988) unit root tests were performed in three different forms 
as follows:  
– random walk with drift (constant i.e. intercept),  
– random walk with a drift around deterministic time trend 

(constant and trend), 
– random walk (non-deterministic component).  

The regression for the ADF of a random walk with a drift 
around deterministic time trend test is given in the equation 
below. 

�Zt ¼ �0 þ �1Zt� 1 þ �2tþ
Xp

i¼1

�i�Zt� i þ "t ð4Þ

where the drift of the variable Z over time t is presented by a0, 
and the time trend is given by the term a2t. The εt component is 
assumed to be Gaussian white noise random error, and 
(p) number of observations in the sample, time (t) varies by 
t = 1, 2 … 32. 

ECONOMETRIC MODELLING 

Through this study PESARAN and SHIN [1999] and PESARAN et al. 
[2001] procedure has been adopted. In the context of a water 
demand forecasting, the autoregressive distributed lag (ARDL) 
model which is an ordinary least square (OLS) used. The model 
solved for prediction of the long-run relationship starting from 
a dynamic ARDL model. 

ARDL co-integration technique is adopted irrespective of 
whether the underlying variables are stationary on level I(0) or 
the on first difference I(1), or combination of both and cannot be 
applied when the underlying variables are integrated at the 
second difference I(2). ARDL provides a unified framework for 
testing and estimating of co-integration relations in the constant 
of a single equation. It is worth mentioning that the ARDL model 
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Table 3. Proximity of independent variable effect on dependant 
variable 

Independent 
variable Notation Timing of effect on billed amount (DV) 

Billed amount 
per subscriber Bc captures all previous dynamics of the 

variable 

Marginal price Mp in most cases it is estimated insignificant 
in both long run and short run 

GDP per capita Gc in most cases it is estimated insignificant 
in both long run and short run 

System input 
per subscriber Ic has an insignificant short-run effect 

Temperature T30 has a short-run effect, but on the long-run 
effect it is diminishes  

Source: own elaboration based on ARBUÉS et al. [2003] and MARTÍNEZ- 
ESPINEIRA and NAUGES [2004]. 
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able to coordinate between the short-run elements and the long- 
run stability by the development of a dynamic error correction 
model (ECM) HASSLER and WOLTERS [2006]. The following 
equation explains the ARDL model: 

�Yt ¼ �0 þ
Xp

i¼1

�i�Yt� i þ
Xp

i¼0

�i�Xt� i þ �1 yt� 1 þ �2 xt� 1 þ "t ð5Þ

where: βi and δi present the short-run coefficient, and θ1 and θ2 

are the long-run ARDL coefficient, while the εt is the disturbance 
(white noise) term.  

Now, if θ1 and θ2 are not zero, thus there is a conditional 
level relationship between yt and xt. The long-run equation of yt 

(equation) and its lagged residuals is expressed by following 
equations respectively: 

yt ¼ �0 þ �1xt þ �t ð6Þ

zt� 1 ¼ yt� 1 � b0xt � b1 xt� 1 ð7Þ

Now, the long-run term θ1 yt–1 + θ2 xt–1 is replace by its residuals 
(zt–1), therefore, the ARDL reverts to ECM. ECM equation is 
defined by:  

�Yt ¼ �0 þ
Xp

i¼1

�i�Yt� i þ
Xp

i¼0

�i�Xt� i þ �Zt� 1 þ "t ð8Þ

where: θ presents the speed adjustment to restore equilibrium in 
the dynamic model, it is called error correction term (ECT).  

Furthermore, to ensure convergence toward equilibrium in 
the long-run, ECT should be less than zero and significant 
otherwise, the model is considered unstable and explosive if it is 
positive. 

The ARDL modelling approach to co-integration consists of 
two steps. First, the long-run relationship between the indepen-
dent variable and dependent variables is tested. In the next step, 
the coefficients of the long run are obtained, then by re- 
parameterizing Equation (5), the ECM is evaluated, and both ECT 
and the short-run coefficients are estimated. The researcher used 
EViews Software to analyse the data and to solve the model. 

RESULTS AND DISCUSSION 

STATIONARITY OF THE VARIABLES 

GRANGER and NEWBOLD [1974] indicated in their paper that 
spurious regression may be obtained by regressing a non- 
stationary variable on one or more non-stationary variables. This 
lead to the importance of the stationarity of the variables for 
a time series regression. In this study, autoregressive distributed 
lag (ARDL) is used, which has the power to use different time 
series integrated at different orders. Nevertheless, it shows 
ineffectiveness when the time series integrated at level two or 
more [NKORO, UKO 2016]. 

In this section, the stationarity of billed amount per 
subscriber (LBc), marginal price in piasters (LMp), system input 
per subscriber (LIc), per capita real GDP at basic prices (LGc), 
and the number of days with temperature above 30°C (LT30) 
variables will be checked to ensure the level of integration.  

Different tests can be conducted to verify the stationarity of 
the time series. The famous augmented Dickey–Fuller (ADF) and 
Phillips and Perron (PP-1988) unit root tests are used [NKORO, 
UKO 2016; PHILLIPS PERRON 1988]. For the annual data on variables 
for the period 1980 to 2012, the results of the ADF test and PP 
test that are performed using EViews software are presented in 
Table 4.  

Noting that the unit root test that EViews provides generally 
test the null hypothesis H0: p = 1 against the one-sided alternative 
H1: p < 1. 

The null hypothesis of the tests suggests that the series has 
a unit root (variable is non-stationary). This hypothesis 
confirmed if the absolute value of the t-statistics is less than 
critical value at 10% and/or 5% and/or 1% and the probability 
value is more than 10% and/or 5% or 1% depends on the level of 
significance used. 

On the other hand, the stationarity is confirmed by: 
(1) t-statistics: If the absolute value of the test statistic is greater 
than the critical values at 1%, 5% and 10% confidence, then this 
implies statistical significance and the null hypothesis can be 
rejected which means there is no unit root and the series is 
stationary; (2) probability (p) value acceptable values are less than 
the confidence level of 10%, 5% or 1%. 

Augmented Dickey–Fuller (ADF) test with Schwarz info 
criterion of max eight lags has been conducted. The test shows 
that the null hypothesis at the level is acceptable (p value > 10%; 
and the absolute value of the t-statistics is less than critical value 
at 10%, 5% and 1%) for the time series LBc, LMp, LIc, and LGc, 
which implies the existence of unit root or the variables are non- 
stationary at level. 

For the variable LT30, the test was rejected for intercept and 
trend and intercept forms; this suggests that the variable is 
stationary at level (p value < 10%; and the absolute value of the 
t-statistics is greater than critical value at 10%, 5% and 1%). While 
for the non-deterministic component form, the variable shows 
non-stationarity behaviour see Table 4. 

Moreover, the test has been also applied at the first difference 
of the variables, and the result emphasize that the LBc, LMp, LIc, 
and LGc, are integrated at the first order (stationary) (p value < 1%; 
and the absolute value of the t-statistics is greater than critical value 
at 10%, 5% and 1%), see Table 4. 

Phillips and Perron unit root test shows consistency with the 
augmented Dickey–Fuller (ADF) test results, in which the 
variables LBc, LMp, LIc, and LGc, are non-stationary at the level 
while they are stationary at the first order.  

The time series LT30 shows stationarity at the level for 
random walk with drift and random walk with a drift around 
deterministic time trend form. Nevertheless, the time series shows 
non-stationary for random walk.  

As a result, all variables show a stationarity behaviour in the 
first differences I (1) except LT30 which shows stationarity at 
both levels I (0, 1).  

Stationarity has been also tested using correlogram, and 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS-1992) approaches. 
Results are analogous to those obtained with the ADF and 
Phillips and Perron tests. 

As a result, all variables show a stationarity behaviour in the 
first differences I (1). The LT30 variable which shows stationarity 
at both I (0, 1) should be considered with caution, since it might 
be I (0, 1). 
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Stationarity was also tested using correlogram, and Kwiat-
kowski–Phillips–Schmidt–Shin (KPSS-1992) approaches. Results 
are analogous to those obtained with the ADF and Phillips and 
Perron tests.  

OPTIMAL LAG STRUCTURE  

An initial unrestricted vector autoregressive (VAR) model has 
been created to specify the optimal lag length. It links the billed 
amount per subscriber (LBc) (dependent variable) and other 
explanatory variable over the running period 1980–2012. 

The lag length criteria test has been conducted using three 
lags (0, 1, 2) to determine the optimal lag length. Different 
criterion has been tested – see Table 5. The Table 5 shows that the 
sequential modified log likelihood ratio test statistic (each test at 
5% level) (LR), Schwarz information criterion (SC), and Hannan– 

Quinn information criterion (HQ) suggest that the optimal lag 
length is one; while the final prediction error (FPE) and the 
Akaike information criterion (AIC) go with two lags. We used 
Akaike’s information criterion (AIC) criterion to choose optimal 
lag lengths for the basic ARDL model. 

AUTOREGRESSIVE DISTRIBUTED LAG (ARDL) MODEL  

The ARDL model can study the long-run equilibrium relation-
ship between the variables regardless of being I (0) or I (1). For 
our case, the number of days with temperature above 30°C (LT30) 
variable is I (0) and I (1) for the intercept and intercept and trend 
approach; moreover, the rest of the variables are I (1). Therefore, 
this leads us to propose the autoregressive distributed lag (ARDL) 
model to study the relation between the billed amount per 
subscriber (LBc) (dependent variable) and marginal price in 
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This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/) 

Table 4. Augmented Dickey–Fuller (ADF) and Phillips and Perron unit root tests 

Serie  Level  
of integration Parameter 

Augmented Dickey–Fuller (ADF) test Phillips and Perron test Stationary 
or non- 

stationary  intercept  trend and 
intercept none intercept  trend and 

intercept none 

Ln(Bc) 

level 
t-statistic1) –2.28 –2.38 –0.24 –2.43 –2.53 –0.25 

no 
p value2)  0.18 0.38  0.59  0.14  0.31  0.59 

first difference 
t-statistic –4.35 –4.26 –4.45 –4.14 –4.05 –4.24 

yes 
p value  0.00  0.01  0.00  0.00  0.02  0.00 

Ln(Mp) 

level 
t-statistic –1.86 –3.17  2.82 –2.05 –3.16  2.92 

no 
p value  0.35  0.11  1.00  0.26  0.11  1.00 

first difference 
t-statistic –4.93 –5.04 –3.99 –4.91 –5.02 –4.00 

yes 
p value  0.00  0.00  0.00  0.00  0.00  0.00 

Ln(Ic) 

level 
t-statistic –1.56 –2.52 –0.47 –1.61 –2.58 –0.48 

no 
p value  0.49  0.32  0.51  0.47  0.29  0.50 

first difference 
t-statistic –5.62 –5.57 –5.67 –5.62 –5.58 –5.67 

yes 
p value  0.00  0.00  0.00  0.00  0.00  0.00 

Ln(Gc) 

level 
t-statistic –1.92 –2.87 –0.51 –1.44 –1.42  0.04 

no 
p value  0.32  0.19  0.49  0.55  0.83  0.69 

first difference 
t-statistic –4.07 –4.19 –4.15 –4.06 –4.18 –4.14 

yes 
p value  0.00  0.01  0.00  0.00  0.01  0.00 

Ln(T30) 

level 
t-statistic –4.36 –6.35  1.58 –4.33 –7.24  1.60 

yes 
p value  0.00  0.00  0.97  0.00  0.00  0.97 

first difference 
t-statistic –6.23 –6.27 –5.83 –22.46 –21.34 –19.39 

yes 
p value  0.00  0.00  0.00  0.00  0.00  0.00  

The stationarity is confirmed by: 
1) t-statistics: If the absolute value of the test statistic is greater than the critical values at 1%, 5% and 10% confidence, then this implies statistical 
significance and the null hypothesis can be rejected. This means there is no unit root and the series is stationary. 
2) p value acceptable values are less than the confidence level of 10%, 5% or 1%. 
Source: own study. 

Table 5. Selection lag order/length using different criteria 

Lag LogL LR FPE AIC SC HQ 

0 128.0565 NA  2.45e–10   –7.939128   –7.707840   –7.863734 

1 239.3987 179.5842*  9.58e–13 –13.50959  –12.12186*  –13.05723* 

2 268.3563  37.36462  8.50e–13* –13.76492* –11.22075 –12.93559  

* indicates lag order selected by the criterion. 
Source: own study. 
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piasters (LMp), system input per subscriber (LIc), per capita real 
GDP at basic prices (LGc), and the number of days with 
temperature above 30°C (LT30) (independent variables). 

The researcher built the model using the available observa-
tions spanned from 1980 to 2012. The model has been estimated 
using the optimal lag numbers selected by the Akaike information 
criterion (AIC) and from the diagnostic statistics. For the billed 
amount per subscriber (water demand), the Akaike’s information 
criterion (AIC) with automatic lag selection and constant trend 
specification selects the ARDL (2, 1, 2, 2, 0).  

The proposed ARDL model shows a high degree of fit, as 
measured by the coefficient of determination (R2) or the 
corrected coefficient R2, F-statistic, and Durbin–Watson statistics 
is higher than the R2. Several diagnostic tests have been 
implemented which indicates that the obtained ARDL model 
has no serial correlation and conditional heteroskedasticity and 
that the errors are normally distributed. 

In the first stage of ARDL modelling is testing the presence 
of co-integration relationship among the determinants, the ARDL 
bounds technique is used. The results show that the F-statistics 
fall outside the upper limit of critical value bounds. Therefore, the 
null hypothesis that states there is no long-run relationships exist 
is rejected; consequently, there are co-integrations among the 
variables LBc, LMp, LIc, LGc, and LT30 (Tab. 6). 

ARDL CO-INTEGRATION APPROACH 

Annual data from 1980 to 2012 for Amman were employed to 
estimate the ARDL approach to co-integration for water demand 
forecasting as described above. In this section, both long-run and 

short-run elasticities are estimated, interpreted and compared to 
international studies. The estimated long-run and short-run 
coefficients, its standard error and probability are presented in 
Tables 7 and 8.  

ARDL LONG-RUN RESULTS  

Having established the existence of a long-run equilibrium 
relationship between the billed amount per subscriber (LBc) 
and system input per subscriber (LIc) and other explanatory 
variables, the researcher presents in Table 7 the estimated long- 
run coefficients. According to the results present in Table 7, both 
system input per subscriber (LIc), and per capita real GDP at 
basic prices (LGc) estimates are statistically significant at the 5% 
level. The estimated long-run coefficients of the marginal price in 
piasters (LMp) and the number of days with temperature above 
30°C (LT30) are not statistically significant.  

The results identified that LGc has a significant positive 
effect on the Lbc, meaning that as the economy becomes more 
robust, the water consumption increase. If there is an increase of 
1% in economic growth, water demand (billed amount per 
subscriber) will increase by 0.24% in the long-run in Amman. 

The estimated coefficient of system input per subscriber 
(LIc) is positive and highly significant, indicating that more water 
provided, more water consumed. The long-run system input 
elasticity of billed amount per subscriber is estimated to be 0.54, 
implying that a 1% increase in system input will cause about 
a 0.54% increase in water demand. 

The marginal price (LMp) has a negative relationship with 
the billed amount per subscriber (LBc), while the number of days 
with temperature above 30°C (LT30) has a positive trend. 
Nevertheless, both variables have an insignificant relationship in 
the long-run. 

ERROR CORRECTION MODEL (ECM) 

Having achieved the long-run elasticities of the billed amount per 
subscriber equation, an error correction model (ECM) for the 
selected ARDL Model needs to develop to estimate the short-run 
elasticities. ECM model has both error correction term (ECT), 
which presents the speed of the variables returning to equilibrium 
and short-run coefficients.  

Table 8 presents the results of the estimated ECM. ECT 
estimate is significant with a negative sign. Both system input per 
subscriber (LIc), and lagged marginal price in piasters (LMp) 
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Table 6. Autoregressive distributed lag (ARDL) bounds test 

Test statistic Value K 

F-statistic 1) 4.785749 4 
Critical value bounds  

Significance I0 bound I1 bound  
10% 2.45 3.52  
5% 2.86 4.01  
2.5% 3.25 4.49  

1) F-statistic of at least 3.95 is needed to reject the null hypothesis at an 
alpha level of 0.1. 
Explanation: K = the number of dynamic regressors. 
Source: own study. 

Table 7. Long-run elasticities of autoregressive distributed lag model 

Variable C LGc LIc LMp LT30  

Coefficient –0.01201 0.240586 0.535194 –0.02755 0.053851  

Standard error 1.01832 0.070426 0.104818 0.037468 0.073439  

T-statistic –0.0118 3.416158 5.105946 –0.73528 0.733278  

Probability (%) 99.07 0.20 0.00 46.83 46.95  

R2 0.56926  

Adjusted R2 0.507723                

Explanations: LBc = per subscriber yearly billed water amount (m3∙y–1), LMp = marginal price, LIc = yearly per subscriber system input LGc = real per 
capita GDP at basic prices, LT30 = number of days in which temperature exceeded 30°C in Amman. 
Source: own study. 
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estimates are statistically significant at the 5% level, while the 
lagged water consumption is significant at the 7%. Moreover, per 
capita real GDP at basic prices (LGc), the marginal price in 
piasters (LMp) and the number of days with temperature above 
30°C (LT30) are not statistically significant. 

Moreover, it was confirmed that the ECM shows a high 
degree of fit regards the R2 or the corrected coefficient R2, 
F-statistic. Durbin–Watson statistics is higher than the R2 which 
implies that ECM is not spurious. Likewise, diagnostic tests have 
been performed to check that the residuals are normally 
distributed and are neither auto-correlated nor heteroskedastic. 
The model shows that the residuals are normally distributed and 
are nor auto-correlated and free of heteroscedasticity.  

The parameter associated with the ECM shows how quickly 
variables converge to equilibrium; this should be significant with 
a negative sign. The significance of the ECT is an evidence of the 
stability of the long-run relationship. In our model, the ECT is 
negative and highly significant, indicating a stable long-term 
relationship. The water demand model states that LBc restores the 
long-run equilibrium with a 92.7% speed of adjustment every year 
by the influence of the variables, LMp, LIc, LGc, and LT30; this 
implies that the correction takes place relatively rapidly. 

The short-run outcomes suggest the lagged water consump-
tion has a significant favourable influence on water demand 
(billed amount per subscriber) on a 7% level. A 10% increase in 
water consumption of the previous year will cause a 3.5% increase 
in water demand in the short run. This result reveals that the 
water consumption habits play a significant role in current water 
consumption. This result goes with MARTINEZ-ESPIÑEIRA [2002], 
NAUGES and THOMAS [2003], MUSOLESI and NOSVELLI [2007], and 
studies.  

Per capita real GDP at basic prices (LGc) has insignificant 
positive relationships with the water demand. As the per capita 
real GDP reflect the personal income, this implies that water 
demand is inelastic to personal income in the short term, this 
result is quite usual. Nevertheless, the per capita real GDP, as 
mentioned in section titled “ARDL long-run results”, is positive 
and significant with 0.24% elasticity. Although this value is a little 

elasticity concerning income, it can give an insight that the water 
demand is unsatisfied for different level wealth, either by the 
newly adopted sumptuous lifestyle of rich people or by satisfying 
more needs by averaged people. Moreover, low water prices 
exhibit a low level of perception of water consumption value, 
since a small proportion of income goes for water bills. 

The short-run system input coefficient of the billed amount 
per subscriber is estimated to be 0.47, which means that a 1% 
increase in system input will lead to about a 0.47% increase in 
water demand. Moreover, at the 10% level, the lagged system 
input has a positive association with per subscriber water 
consumption. The long-run system input elasticity estimate is 
more abundant in absolute value than the short-run elasticity 
with a statistically significant point estimate of 0.54 (see section 
titled “ARDL long-run results”). Although the system input 
should not affect the water demand, in the case of Jordan, where 
the water resources are limited, thus the water supply is also 
limited; this implies that the water demand is not satisfied. 

The estimated water price coefficient in the short run is 
negative and highly insignificant. Moreover, the lagged water 
price has a significant adverse effect on water consumption, the 
lagged water price elasticity –0.21, that is low. These estimates of 
price elasticities, in addition to long-run elasticity, confirm that 
per capita consumption (billed amount per subscriber) is inelastic 
to its price. This inelasticity reveals the fact of water shortage, low 
income, and low water price in the study area. This result is in 
line with most papers published on residential water demand 
MARTÍNEZ-ESPINEIRA and NAUGES [2004]), ARBUÉS et al. [2010], 
MUSOLESI and NOSVELLI [2010].  

Water demand is positively associated with the number of 
days with temperature above 30°C (LT30). However, this variable 
is insignificant in the short and long run (Tabs. 7 and 8). This 
result suggests that the temperature is not crucial in water 
consumption estimation, especially in the water-scarce region. 

This result suggests that the temperature does not play an 
essential role in water consumption estimation, especially in the 
water-scarce region. This result agree with MARTINEZ-ESPIÑEIRA 

[2002] study. 
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Table 8. Short-run elasticities of autoregressive distributed lag (ARDL) model 

Parameter 
Variable 

C D(LBC(–1)) D(LGC) D(LIC) D(LIC(–1)) D(LMP) D(LMP(–1)) D(LT30) ECT(–1)  

Coefficient 0.004531 0.353947 0.23933 0.467365 0.25322 –0.060759 –0.210611 0.02299 –0.92676  

Standard error 0.008506 0.179042 0.188333 0.115798 0.136995 0.093451 0.093521 0.041275 0.193887  

T-statistic 0.532644 1.976886 1.27079 4.036019 1.84839 –0.650176 –2.252034 0.55698 –4.77987  

Probability (%) 59.96 6.07 21.71 0.06 7.80 52.23 3.46 58.32 0.01  

R2 0.710271  

Adjusted R2 0.604916  

F-statistic 6.741642  

Prob (F-statistic) 0.000175  

Durbin–Watson stat1) 2.074471  

1) Durbin–Watson stat is greater than 2 indicating negative autocorrelation. Values from 0 to less than 2 positive autocorrelation and values from 2 to 4 
indicate negative autocorrelation. 
Explanations: D(LBC) = lagged per subscriber yearly billed water amount, D(LGC) = real per capita GDP at basic prices, D(LIC) = yearly per sub- 
scriber system input, D(LIC(–1)) = lagged yearly per subscriber system input, D(LMP) = marginal price, D(LMP(–1)) = lagged marginal price, D(LT30) 
= number of days in which temperature exceeded 30°C in Amman, ECT(–1): the error correction term. 
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Generally, the developed model dynamic water demand 
model in the form of multiple-coefficient, non-linear, multi-
plicative, and logarithmic is statistically accepted with R2 of 0.71, 
this form of modelling has been used by different researchers to 
represent water demand. Also the model results are in line with 
internationally reported literature. The results indicate that water 
demand in limited water resources environment is partially 
captured in the long run by the amount of water reaching the 
customer and gross domestic product (GDP). Results show the 
ability of the model to predicting future trends (short and long- 
run association). Moreover, the small elasticity of water price and 
the relation identified between the demand and the water system 
input with other explanatory variables confirm the condition of 
water deficit for Amman area and Jordan. Also it can be said that 
autoregressive distributed lag (ARDL) co-integration modelling 
provide a suitable empirical tool for predicting water demand 
using different proposed time series as potential descriptors 
including per subscriber water consumption, the ARDL approach 
helps in specifying, estimating and checking the demand model 
using diagnostic analysis. 

CONCLUSIONS  

This research developed an autoregressive distributed lag (ARDL) 
estimator of residential water demand based on Amman area 
data. Throughout the model, the stationarity of the time series 
was estimated by different approaches. The model has been 
verified and proof capable to capture water consumption per user 
dynamics. 

The model developed in this article captures the variations 
in billed amount per subscriber (water demand) that results from 
changes in factors affecting the residential water demand. The 
results obtained of the elasticity values of the variables do match 
the similar international studies.  

Conclusions include that in a country with scarce resources 
like Jordan, the people do not respond adequately to changes in 
the water prices directly while the lagged water price has 
a significant effect on demand. The system input has a highly 
significant and positive effect on water consumption. This reveals 
that water usage in Jordan is dominant by the essential needs, and 
emphasizes that residential water demand is not fully satisfied. 
The income has insignificant effect in the short-run on water 
demand, while it is significant in the long run. The lagged water 
consumption has a positive and significant response to the 
current water demand. This gives a shred of evidence that habits 
play essential role in residential water consumption, the results 
also indicate that number of days with temperature above 30°C, 
which reflects a climate factor, has insignificant effect on 
residential water demand in case of poorly satisfied demand 
situation and low marginal water prices. In other words, the 
results highlight the priority of satisfying the residential water 
demand under water shortage conditions while using strategies 
that depends on variables like water prices, income, and 
temperature has a low or negligible effect on water demand. 

The model provides a tool that can be used by Amman 
water utility in developing its policies and strategies to cope with 
future demand in its service area for short- and long-term time 
horizon.  

Other utilities in Jordan and other countries which face 
similar conditions of water scarcity and arid and semi-arid 
climate can also base their plans for residential water demand 
forecasting on the model by tailoring it to suit its specific 
conditions. 

Finally, the autoregressive distributed lag (ARDL) co- 
integration model estimator can be used by water utilities for 
develop time series forecasts of residential water demand 
forecasting. 
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